Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Собственные векторы и собственные значения матрицы



Вектор называется собственным вектором матрицы , если найдется такое число , что

(1.6)

Число называется собственным значением матрицы , соответствующим вектору .

Равенство (1.6) можно записать в развернутом виде:

.

Откуда получим

или в матричном виде

.

Полученная система всегда имеет нулевое решение. Для существования ненулевого решения необходимо и достаточно, чтобы определитель системы обращался в нуль:

(1.7)

Определитель является многочленом -ой степени. Он называется характеристическим многочленом матрицы , а уравнение (1.7)– характеристическим уравнением матрицы .

Теорема 6. Корни характеристического уравнения матрицы (если они существуют) и только они являются собственными значениями этой матрицы.

Пример 13. Найти собственные значения и собственные векторы матрицы:

.

Решение. Составим характеристическое уравнение

или ,

откуда собственные значения матрицы : , .

Находим собственный вектор , соответствующий собственному значению . Для этого решаем матричное уравнение:

или ,

откуда , т.е. . Положив , мы получим, что вектор при любом является собственным вектором матрицы с собственным значением . Аналогично, получим, что вектор при любом является собственным вектором матрицы с собственным значением .n

Пример 14. Найти собственные значения и собственные векторы матрицы:

Решение. После преобразований (проделайте это самостоятельно) характеристическое уравнение примет вид:

.

Имеем далее

,

откуда , .

Найдем собственный вектор , соответствующий собственному значению :

Решая полученную систему методом Гаусса, получим , где и произвольные числа не равные нулю одновременно.

Аналогично находим, что при любом есть собственный вектор матрицы с собственным значением .





Дата публикования: 2015-03-29; Прочитано: 169 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...