![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Предел последовательности. Пусть есть последовательность { cn } = {1/ n }.Эту последовательность называют гармонической, поскольку каждый ее член, начиная со второго, есть среднее гармоническое между предыдущим и последующим членами. Среднее геометрическое чисел a и b есть число , или
. С ростом n все члены геометрической прогрессии убывают и их значение приближается к нулю. В этом случае принято говорить, что при n, стремящемся к бесконечности, данная последовательность сходитсяи нуль есть ее предел. Записывается это так:
.
Строгое определение предела формулируется следующим образом:
Если существует такое число A, что для любого (сколь угодно малого) положительного числа e найдется такое натуральное N (вообще говоря, зависящее от e), что для всех n ³ N будет выполнено неравенство | an – A | <e, то говорят, что последовательность{ an }сходится и A – ее предел.
Обозначается это так: .
Дата публикования: 2015-03-26; Прочитано: 188 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!