Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Асимптоты плоской кривой



Определение 1. Если точка M(x; y) перемещается по кривой y = f (x) так, что хотя бы одна из координат точки стремиться к ¥ и при этом расстояние от этой точки до некоторой прямой стремиться к 0, то эта прямая называется асимптотой кривой y = f(x).

Асимптоты бывают двух видов: вертикальные и наклонные.

Определение 2. Прямая x = a называется вертикальной асимптотой кривой y = f (x), если хотя бы один из односторонних пределов

или

равен +¥ или -¥

Замечание. Если прямая x = a является вертикальной асимптотой кривой y = f (x), то в точке x = a функция f (x) имеет разрыв второго рода. Наоборот. Если в точке x = a функция f (x) имеет разрыв второго рода, то прямая x = a является вертикальной асимптотой кривой y = f (x).

Определение 3. Прямая y = k x + b называется наклонной асимптотой кривой y = f (x) при x ®+¥ (или x ®-¥), если функцию f (x) можно представить в виде:

,

где a(x) – бесконечно малая функция при x ®+¥ (или x ®-¥).

Теорема 1. Для того чтобы кривая y = f (x) имела наклонную асимптоту при x ®+¥ (или x ®-¥) необходимо и достаточно существования двух конечных пределов:

и

Доказательство. Ограничимся случаем x ®+¥.

Необходимость. Пусть y = k x + b – наклонная асимптота при x ®+¥ кривой y = f (x). Тогда функция f (x) представима в виде:

, где при .

Убедимся в существовании конечных пределов:

.

необходимость доказана.

Достаточность. Пусть существуют конечные пределы и .

Тогда по свойству конечных пределов второй предел можно переписать в виде:

, где a(x) – бесконечно малая при x ®+¥.

Отсюда получаем:

, где при .

Достаточность доказана.

19 вопрос:





Дата публикования: 2015-03-26; Прочитано: 356 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...