Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Свойства функций, непрерывных на отрезке



Теорема 1. Если функция f (x) на отрезке [ a; b ] непрерывна, то она достигает на этом отрезке своих наименьшего m и наибольшего M значений, то есть для любых x Î[ a; b ] выполняется неравенство:

m ≤ f (x) ≤ M.

Теорема 2. Если функция f (x) на отрезке [ a; b ] непрерывна, то для любого числа С, удовлетворяющего неравенству m ≤ С ≤ M, на отрезке [ a; b ], найдется хотя бы одна точа х о, в которой выполняется равенство:

f (х о) = С.

Теорема 3. Если функция f (x) на отрезке [ a; b ] непрерывна и на концах этого отрезка имеет значения различных знаков, то существует хотя бы одна точка х оÎ(a; b), в которой выполняется равенство:

f (х о) = 0.

Теорема 4 (теорема Ролля)

Если функция f (x) определена на [ a; b ] и выполнены следующие условия:

1. f (x) непрерывна на [ a; b ];

2. f (x) дифференцируема на (a; b);

3. f (a) = f (b),

то внутри этого отрезка найдется хотя бы одна точка х о, в которой выполняется равенство:

f ' (хо) = 0.

Доказательство. Так как f (x) непрерывна на [ a; b ], то она достигает на этом отрезке своих наименьшего m и наибольшего M значений.

Возможны два случая:

1) m = M,

2) m < M.

1) Если m = M, то f (x) = const = m = M. Тогда f '(x) = 0 при любом x Î (a; b).

Следовательно, в этом случае теорема верна и при этом в качестве х о можно рассматривать любое значение x Î (a; b).

2) Если m < M, то, исходя из условия f (a) = f (b), по крайней мере одно из чисел m или M не равно f (a) = f (b). Для определенности предположим, что M – наибольшее значение f (x) достигается не на концах отрезка [ a; b ], а в некоторой внутренней точке х о Î (a; b). Тогда в точке х о для приращения функции справедливо неравенство: D y = f (х о + D x) - f (х о) ≤ 0, так как f (х о) = M – наибольшее значение f (x) на [ a; b ] и D x такое, что х о + D x Î [ a; b ].

· Если D x > 0, то и существует

· Если D x < 0, то и существует

Так как по условию теоремы функция f (x) дифференцируема при x Î (a; b), то b в точке х о существует производная. Значит справедливы равенства:

f ' (х о +0) = f ' (х о -0) = f ' (х о) = 0.

Теорема доказана.

Теорема 5 (теорема Лагранжа).

Если функция f (x) определена на [ a; b ] и выполнены следующие условия:

1) f (x) непрерывна на отрезке [ a; b ],

2) f (x) дифференцируема на интервале (a; b), то внутри этого отрезка существует хотя бы одна точка х о, в которой выполняется равенство:

f ' (хо) = .

Доказательство: Рассмотрим вспомогательную функцию F (x) = f (x) + l× x, где l = const. Потребуем, что бы для F (x) выполнялось условие F (a) = F (b).

Так как F (a) = f (a) + l × a; F (b) = f (b) + l × b, то получим равенство:

f (a) + l × a = f (b) + l × b.

Отсюда выразим значение l:

l = - .

При этом значении l функция F (x) = f (x) - .

Функция F (x) удовлетворяет всем условиям теоремы Ролля:

F (x) непрерывна на [ a; b ]:

F (x) дифференцируема на (a; b)

F (a) = F (b).

Следовательно, по теореме Ролля на (a; b) существует хотя бы одна точка х о, в которой выполняется равенство:

F ' (х о) = 0.

Найдем F '(x):

F ' (x) = f '(x) -

Поэтому F ' (x) = f ' (хо) -

=> f ' (хо) =

Теорема доказана.

13 вопрос:

Теорема 7 (правило Лопиталя).

Если функции f (x) и g (x) определены в некоторой окрестности точки х о и в этой окрестности они удовлетворяют условиям:

1) f (x) и g (x) дифференцируемы в каждой точке, за исключением, может быть, самой точки х о;

2) g ' (x) ¹ 0 для любого x из этой окрестности;

3) или

тогда, если существует конечный или бесконечный, то выполняется равенство:

= .

Это правило Лопиталя используется для раскрытия неопределенностей типа или , возникающих при вычислении пределов. Если под знаком предела оказывается неопределенность другого типа: 0×∞, ∞ - ∞, 10, 00 или ∞0, то с помощью тождественных алгебраических преобразований такая неопределенность приводится к или , а затем можно применить правило Лопиталя.

Замечание 2. Если к условиям теоремы 6 добавить дифференцируемость функций f '(x) и g '(x) в окрестности точки х о, то при выполнении остальных требований для f '(x) и g '(x) правило Лопиталя можно применить повторно. При этом будет справедливо равенство:

= =

14 вопрос:

(производная сложной функции)

Если функция f (u) дифференцируема в точке u, а функция u (x) дифференцируема в точке x, причем u = u (x), тогда сложная функция f (u(x)) дифференцируема в точке x и ее производная вычисляется по формуле:

(f (u (x)))' = f '(u) × u ' (x).

Доказательство. Рассмотрим функцию y = f (U). Так как функция f (u) дифференцируема в точке u, то ее приращение можно записать в виде:

, где

Разделим на D x и перейдем к пределу при D x ®0:

(если D x ®0, то D u ®0, т.к. u (x) дифференцируема, а значит непрерывна)

Значит: (f (u (x)))' = f ’(u) × u ' (x).

Теорема доказана.

15 вопрос:





Дата публикования: 2015-03-26; Прочитано: 194 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...