Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Метод Гаусса. Описанные выше методы используют фиксированные точки отрезка (концы и середину) и имеют низкий порядок точности (1 — методы правых и левых прямоугольников



Описанные выше методы используют фиксированные точки отрезка (концы и середину) и имеют низкий порядок точности (1 — методы правых и левых прямоугольников, 2 — методы средних прямоугольников и трапеций, 3 — метод парабол (Симпсона)). Если мы можем выбирать точки, в которых мы вычисляем значения функции , то можно при том же количестве вычислений подынтегральной функции получить методы более высокого порядка точности. Так для двух (как в методе трапеций) вычислений значений подынтегральной функции, можно получить метод уже не 2-го, а 3-го порядка точности:

.

В общем случае, используя точек, можно получить метод с порядком точности . Значения узлов метода Гаусса по точкам являются корнями полинома Лежандра степени .





Дата публикования: 2015-03-26; Прочитано: 205 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...