![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Прежде чем получить уравнение плоскости, проходящей через две заданные параллельные прямые, вспомним теорему: через две параллельные прямые проходит единственная плоскость. Эта теорема доказывается на основе аксиомы о единственной плоскости, проходящей через три заданные точки, с использованием утверждения: если одна из двух параллельных прямых пересекает плоскость, то и другая прямая пересекает эту плоскость.
Таким образом, мы можем задать конкретную плоскость в трехмерном пространстве, указав две параллельные прямые, лежащие в этой плоскости.
Очевидно, что плоскость, проходящая через две заданные параллельные прямые, совпадает с плоскостью, проходящей через три различные точки, две из которых лежат на одной из заданных параллельных прямых, а третья лежит на другой прямой.
Теперь можно приступать к нахождению уравнения плоскости, проходящей через две заданные параллельные прямые.
Пусть в трехмерном пространстве введена прямоугольная система координат Oxyz, заданы две параллельные прямые a и b и требуется составить уравнение плоскости, которая проходит через параллельные прямые a и b.
Эта задача, также как и задача о нахождении уравнения плоскости, проходящей через две заданные пересекающиеся прямые, сводится к составлению уравнения плоскости, проходящей через три точки. Действительно, мы можем определить координаты двух точек М1 и М2, лежащих на одной из заданных параллельных прямых, и координаты точки М3, лежащей на другой прямой. После этого нам лишь нужно написать уравнение плоскости, проходящей через три точки и
, в виде
. Это уравнение является искомым уравнением плоскости, проходящей через две заданные параллельные прямые.
Дата публикования: 2015-02-28; Прочитано: 406 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!