Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Теоретичні відомості. Фізика – наука експериментальна



Фізика – наука експериментальна. Метою фізичного практикуму є вивчення за допомогою дослідів основних фізичних явищ, аналіз та самостійне їх відтворення. Фізика є наукою кількісною, тому результат вимірювань зображують у вигляді цифр.

Виконання будь-якої лабораторної роботи завжди супроводжується вимірюваннями. Вимірювання фізичної величини – процес порівняння її з однорідною величиною, яку взято за одиницю вимірювання. Можна виділити дві групи вимірювань: прямі та непрямі.

У випадку прямих вимірювань результат визначається безпосередньо за показниками приладів. Наприклад, час – за годинником, струм – за амперметром. У випадку непрямих вимірювань значення фізичної величини визначається за допомогою обчислення за формулою, яка встановлює функціональну залежність цієї величини від інших величин, що вимірюються безпосередньо. Наприклад, густина циліндра

, (2.1)

де m – маса циліндра, r – радіус циліндра, h – висота циліндра.

Відомо, що за достатньо точних вимірювань однієї і тієї ж величини одержувані значення відрізняються одне від одного, тому що містять помилки (похибки). Це зумовлено недосконалістю вимірювальної апаратури, похибками методу вимірювання, недосконалістю органів почуттів спостерігача та іншими причинами.

Абсолютною похибкою вимірювання називають різницю між результатом вимірювання х та дійсним значенням х0 вимірюваної величини. Похибка вимірювань звичайно є невідомою, тому що невідомим є дійсне значення вимірюваної величини.

Тому до завдання вимірювань входить визначення самої величини та оцінювання допущеної під час вимірювання похибки. Визначається наближене значення вимірюваної величини та інтервал значень, до якого з визначеною ймовірністю належить дійсне значення вимірюваної величини. В залежності від причини виникнення похибки вимірювань розподіляють на промахи, випадкові та систематичні помилки.

Промахи, або грубі помилки, виникають унаслідок порушення основних умов вимірювання або у результаті недогляду експериментатора. У разі виявлення промаху результат вимірювання треба відразу ж відкинути, а вимірювання повторити, якщо це можливо. Зовнішньою ознакою результату, що містить у собі промах, є його різка відміна по величині від результатів інших вимірювань.

Випадкові помилки – це похибки, причини виникнення яких або невідомі, або їх так багато, що неможливо передбачити результат їх спільної дії. Випадкові похибки спричинені великою кількістю таких факторів, ефекти дії яких настільки незначні, що їх неможливо виділити й урахувати поодинці. Випадкові помилки неможливо усунути із результатів вимірювань, але за допомогою методів теорії ймовірності можливо урахувати їх вплив на оцінку дійсного значення вимірюваної величини, що дозволяє дефініювати значення вимірюваної величини зі значно меншою помилкою як помилки окремих вимірювань. Випадкові помилки характеризуються певним законом їх розподілення.

За вимірювання макроскопічних величин, як правило, справедливий закон розподілення Гауса, зображений у вигляді графіка на рис.2.1. (Існують і інші закони розподілення випадкових величин).

Як видно з графіка, для більшості вимірювань є характерним відхилення від дійсного значення вимірюваної величини.

Проведемо вертикальні лінії ліворуч та праворуч на однаковій відстані від нуля таким чином, щоб площа між ними складала 68% від загальної площі під кривою.

Помилки, відповідні до цих ліній, позначимо через σ. Величину σ назвемо стандартною помилкою, або стандартним відхиленням. Як бачимо з рисунка, у 68 випадках із 100 фактична помилка знаходиться у межах ±σ. Помилка досліду в 95% випадків знаходиться в інтервалі ± 2 σ та у 99,7% випадків не перевищує ±3σ. Можна прийняти, що випадкові помилки вимірювання обмежені за абсолютною величиною значенням 3σ (правило трьох сигм). Тому при обробці результатів вважаємо, що вимірювання, які відрізняються від середнього більше як на 3σ, є промахами, і такі вимірювання будемо відкидати.

Квадрат величини σ називають дисперсією помилки.

В теорії ймовірності дисперсію можна обчислити за формулою:

, (2.2)

де – значення вимірюваної величини в i-му досліді;

n – кількість дослідів;

– дійсне значення вимірюваної величини.

Проте дійсне значення вимірюваної величини , як правило, заздалегідь невідоме. Тому, на основі експериментальних даних, визначається середнє квадратичне відхилення величин від їх середнього значення < х >.

. (2.3)

Квадрат величини S можна вважати приблизно рівним дисперсії

. (2.4)

Середнє значення вимірюваної величини х визначається співвідношенням

. (2.5)

За великої кількості вимірювань шукане значення вимірюваної величини можна визначити з більш великою точністю. Це пов’язано з тим, що позитивні та негативні помилки частково компенсуються при усереднюванні результатів усіх дослідів. За такого усереднення середнє квадратичне відхилення σ зменшується і дорівнюватиме

, (2.6)

де – оцінка середнього квадратичного відхилення результату вимірювань.

Тоді дійсне значення шуканої величини знаходиться в межах:

. (2.7)

Інтервал, у межах якого знаходиться дійсне значення шуканої величини, називають надійним. За великої кількості вимірювань можна одержати вузький надійний інтервал із великою надійністю (тобто ймовірність попадання шуканої величини у надійний інтервал буде великою).

За великої кількості вимірювань середнє значення < х > шуканої величини близьке до дійсного, і величину дисперсії можна визначити зазначеним способом. Однак під час виконання лабораторних робіт кількість вимірювань, як правило, є невеликою – 3...5 разів.

У теорії ймовірності розроблено метод визначення надійного інтервалу в залежності від надійності результату за будь-якої, у тому числі й малої, кількості вимірювань (починаючи з двох) на основі розподілення випадкової величини за допомогою коефіцієнта Стьюдента:

, (2.8)

де t – коефіцієнт Стьюдента. Він є функцією надійності Р та кількості вимірювань.

Тоді дійсне значення вимірюваної величини знаходитиметься в надійному інтервалі

. (2.9)

Задаючи потрібну надійність Р (тобто ймовірність потрапляння шуканої величини у надійний інтервал) визначаємо за таблицею значення t для існуючої кількості вимірювань n та знаходимо величину надійного інтервалу для дійсного значення вимірюваної; величини х (табл. 2.1).

Таблиця 2.1





Дата публикования: 2015-02-28; Прочитано: 513 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...