![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
. Пусть дан знакопеременный ряд
.
Если сходится ряд
,
составленный из модулей членов данного ряда, то сходится и сам знакопеременный ряд.
Признак сходимости Лейбница для знакочередующихся рядов служит достаточным признаком сходимости знакочередующихся рядов.
Знакопеременный ряд называется абсолютно сходящимся, если сходится ряд, составленный из абсолютных величин его членов, т.е. всякий абсолютно сходящийся ряд является сходящимся.
Если знакопеременный ряд сходится, а составленный из абсолютных величин его членов ряд расходится, то данный ряд называется условно (неабсолютно) сходящимся.
Дата публикования: 2015-01-26; Прочитано: 204 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!