![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Пусть функция f (x) дважды дифференцируема (имеет вторую производную) на интервале (a, b), тогда:
если f '' (x) > 0 для любого x (a, b), то функция f (x) является вогнутой на интервале (a, b);
если f '' (x) < 0 для любого x (a, b), то функция f (x) является выпуклой на интервале (a, b).
Точка, при переходе через которую функция меняет выпуклость на вогнутость или наоборот, называется точкой перегиба. Отсюда следует, чтоесли в точке перегиба x 0 существует вторая производная f '' (x 0), то f '' (x 0) = 0.
П р и м е р. | Рассмотрим график функции y = x 3 :
![]() |
Асимптоты (вертикальные, наклонные, с доказательством).
Дата публикования: 2015-01-25; Прочитано: 217 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!