Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Замечание. Обратное утверждение формулируется несколько иначе



Обратное утверждение формулируется несколько иначе. Если функция возрастает на промежутке, то или не существует.

Пример

Задание. Исследовать функцию на монотонность на всей числовой прямой.

Решение. Найдем производную заданной функции:

Для любого действительного : , а поэтому делаем вывод, что заданная функция возрастает на всей действительной оси.

Ответ. Функция возрастает на всей действительной оси.

71.Экстремумы функции. Точка называется точкой локального максимума функции , если существует такая окрестность этой точки, что для всех из этой окрестности выполняется неравенство: .

Точка называется точкой локального минимума функции , если существует такая окрестность этой точки, что для всех из этой окрестности .

Значение функции в точке максимума называется локальным максимумом, значение функции в точке минимума - локальным минимумом данной функции. Локальные максимум и минимум функции называются локальными экстремумами.

Точка называется точкой строгого локального максимума функции , если для всех из окрестности этой точки будет справедливо строгое неравенство .

Точка называется точкой строгого локального минимума функции , если для всех из окрестности этой точки будет справедливо строгое неравенство .

72.Необходимое условие экстремума функции- Если функция имеет экстремум в точке , то ее производная либо равна нулю, либо не существует.

Точки, в которых производная равна нулю: , называются стационарными точками функции.

Следствие - f’(x)=0 (производная в точке экстремума =0). Необходимое условие необходимо, но не является достаточным.

73.Первое достаточное условие экстремума функции. (Первое достаточное условие экстремума)

Пусть для функции выполнены следующие условия:

1. функция непрерывна в окрестности точки ;

2. или не существует;

3. производная при переходе через точку меняет свой знак.

Тогда в точке функция имеет экстремум, причем это минимум, если при переходе через точку производная меняет свой знак с минуса на плюс; максимум, если при переходе через точку производная меняет свой знак с плюса на минус.

Если производная при переходе через точку не меняет знак, то экстремума в точке нет.

Таким образом, для того чтобы исследовать функцию на экстремум, необходимо:

1. найти производную ;

2. найти критические точки, то есть такие значения , в которых или не существует;

3. исследовать знак производной слева и справа от каждой критической точки;

4. найти значение функции в экстремальных точках.

74.Второе достаточное условие экстремума функции. (Второе достаточное условие экстремума)

Пусть для функции выполнены следующие условия:

1. она непрерывна в окрестности точки ;

2. первая производная в точке ;

3. в точке .

Тогда в точке достигается экстремум, причем, если , то в точке функция имеет минимум; если , то в точке функция достигает максимум.

75.Критические точки.- Точки, в которых выполняется необходимое условие экстремума для непрерывной функции, называются критическими точками этой функции. То есть критические точки - это либо стационарные точки (решения уравнения ), либо это точки, в которых производная не существует.

76.Нахождение наибольшего и наименьшего значений функции - Если функция определена и непрерывна на отрезке , то она на этом отрезке достигает своих наибольшего и наименьшего значений. Если свое наибольшее значение функция принимает в точке , то будет локальным максимумом функции , так как в этом случае существует окрестность точки , такая, что .

Однако свое наибольшее значение функция может принимать и на концах отрезка . Поэтому, чтобы найти наибольшее значение непрерывной на отрезке функции , надо найти все максимумы функции на интервале и значения на концах отрезка , то есть и , и выбрать среди них наибольшее. Вместо исследования на максимум можно ограничиться нахождением значений функции в критических точках.

Наименьшим значением непрерывной на отрезке функции будет наименьший минимум среди всех минимумов функции на интервале и значений и .

77.Выпуклость и вогнутость функции. Теоремы о выпуклости функции. - График функции , дифференцируемой на интервале , является на этом интервале выпуклым, если график этой функции в пределах интервала лежит не выше любой своей касательной (рис. 1).

График функции , дифференцируемой на интервале , является на этом интервале вогнутым, если график этой функции в пределах интервала лежит не ниже любой своей касательной (рис. 2).





Дата публикования: 2015-02-03; Прочитано: 292 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...