![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Рассмотрим случайный эксперимент, заключающийся в том, что подбрасывается игральная кость, сделанная из неоднородного материала. Ее центр тяжести не находится в геометрическом центре. В этом случае мы не можем считать исходы (выпадение единицы, двойки и т.д.) равновероятными. Из физики известно, что кость более часто будет падать на ту грань, которая ближе к центру тяжести. Как определить вероятность выпадения, например, трех очков? Единственное, что можно сделать, это подбросить эту кость n раз (где n -достаточно большое число, скажем n =1000 или n =5000), подсчитать число выпадений трех очков n3 и считать вероятность исхода, заключающегося в выпадении трех очков, равной n3 / n - относительной частоте выпадения трех очков. Аналогичным образом можно определить вероятности остальных элементарных исходов — единицы, двойки, четверки и т.д.
Теоретически такой образ действий можно оправдать, если ввести статистическое определение вероятности.
Вероятность P( M i) определяется как предел относительной частоты появления исхода M i в процессе неограниченного увеличения числа случайных экспериментов n, то есть
Pi = P (M i) = lim mn (M i ),
n ®¥ n
где mn (M i) – число случайных экспериментов (из общего числа n произведенных случайных экспериментов), в которых зарегистрировано появление элементарного исхода M i.
Так как здесь не приводится никаких доказательств, мы можем только надеяться, что предел в последней формуле существует, обосновывая надежду жизненным опытом и интуицией.
Дата публикования: 2015-02-03; Прочитано: 266 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!