Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Нормальный закон распределения (закон Гаусса)



Плотность вероятности нормально распределённой случайной величины выражается формулой

(8.1)

Кривая распределения изображена на рис. 16. Она симметрична относительно точки (точка максимума). При уменьшении ордината точки максимума неограниченно возрастает, при этом кривая пропорционально сплющивается вдоль оси абсцисс, так что площадь под её графиком остаётся равной единицы (рис. 17).

Нормальный закон распределения широко применяется в задачах практики. Объяснить причины этого впервые удалось Ляпунову. Он показал, что если случайная величина может рассматриваться как сумма большого числа малых слагаемых, то при достаточно общих условиях закон распределения этой случайной величины близок к нормальному независимо от того, каковы законы распределения отдельных слагаемых. А так как практически случайные величины в большинстве случаев бывают результатом действия множества причин, то нормальный закон оказывается наиболее распространённым законом распределения (подробнее об этом [url]см. часть 9[/url]). Укажем числовые характеристики нормально распределённой случайной величины (математическое ожидание и дисперсия):

Таким образом, параметры и в выражении (8.1) нормального закона распределения представляют собой математическое ожидание и среднее квадратическое отклонение случайной величины. Принимая это во внимание, формулу (8.1) можно представить следующим образом:

Эта формула показывает, что нормальный закон распределения полностью определяется математическим ожидание и дисперсией случайной величины. Таким образом, математическое ожидание и дисперсия полностью характеризуют нормально распределённую случайную величину. Разумеется, что в общем случае, когда характер закона распределения неизвестен, знание математического ожидания и дисперсии недостаточно для определения этого закона распределения.

Характеристическая функция нормального распределения случайной величины задаётся формулой

Пример 1. Найти вероятность того, что нормально распределённая случайная величина удовлетворяет неравенству .

Решение. Используя свойство 3 плотности вероятности (см. раздел 4, часть 4), получаем


Положим , тогда


где — функция Лапласа ([url]см. приложение 2[/url]).

Выполним некоторые числовые расчёты. Если положить в условии примера 1, то

Последний результат означает, что с вероятностью, близкой к единице (0,9973), случайная величина, подчиняющаяся нормальному закону распределения, не выходит за пределы интервала . Это утверждение называют правилом трёх сигм.

Наконец, если , то случайная величина, распределённая по нормальному закону с такими параметрами, называется стандартизированной нормальной величиной. На рис. 18 изображён график плотности вероятности этой величины

Примеры с использованием нормального закона распределения приведены также в части 9.





Дата публикования: 2015-02-03; Прочитано: 206 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...