Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Центральная предельная теорема



Пусть — независимые и одинаково распределенные случайные величины с конечной и ненулевой дисперсией: . Обозначим через сумму первых случайных величин: .

Тогда последовательность случайных величин слабо сходится к стандартному нормальному распределению.


Доказательство.

Пусть — последовательность независимых и одинаково распределенных случайных величин с конечной и ненулевой дисперсией. Обозначим через математическое ожидание и через — дисперсию . Требуется доказать, что

Введем стандартизированные случайные величины — независимые с.в. с нулевыми математическими ожиданиями и единичными дисперсиями. Пусть есть их сумма . Требуется доказать, что

Характеристическая функция величины равна

Характеристическую функцию с.в. можно разложить в ряд Тейлора, в коэффициентах которого использовать известные моменты , . Получим

Подставим это разложение, взятое в точке , в равенство и устремим к бесконечности. Еще раз воспользуемся замечательным пределом:

В пределе получили характеристическую функцию стандартного нормального закона. По теореме о непрерывном соответствии можно сделать вывод о слабой сходимости:

распределений стандартизованных сумм к стандартному нормальному распределению, что и утверждается в ЦПТ.

Пользуясь определением и свойствами слабой сходимости, и заметив, что функция распределения любого нормального закона непрерывна всюду на , утверждение ЦПТ можно сформулировать любым из следующих способов:


Следствие.

Пусть — независимые и одинаково распределенные случайные величины с конечной и ненулевой дисперсией. Следующие утверждения эквивалентны друг другу и равносильны утверждению ЦПТ.

· Для любых вещественных при имеет место сходимость

· Для любых вещественных при имеет место сходимость

· Для любых вещественных при имеет место сходимость

· Если — произвольная с. в. со стандартным нормальным распределением, то


Следствием из ЦПТ является предельная теорема Муавра-Лапласа.


Предельная теорема Муавра — Лапласа.

Пусть — событие, которое может произойти в любом из независимых испытаний с одной и той же вероятностью . Пусть — число осуществлений события в испытаниях. Тогда .

Иначе говоря, для любых вещественных при имеет место сходимость


Доказательство.

По-прежнему есть сумма независимых, одинаково распределенных с. в., имеющих распределение Бернулли с параметром, равным вероятности успеха :





Дата публикования: 2015-02-03; Прочитано: 282 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...