Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Производная сложной функции. Пусть функция y=f(x) имеет производную в точке ,а функция z=F(y) имеет производную в точке , тогда сложная функция Ф(x)=F(f(x)) имеет производную в точке



Пусть функция y=f(x) имеет производную в точке ,а функция z=F(y) имеет производную в точке , тогда сложная функция Ф(x)=F(f(x)) имеет производную в точке .

Доказательство: Функция f(x) непрерывна в окрестности точки , функция F(y) непрерывна в окрестности точки , поэтому в окрестности точки существует сложная функция Ф(x).Функция F(y) имеет производную в точке , поэтому она дифференцируема в этой точке.

(\/)

-бесконечно малая более высокого порядка, чем , но может быть неопределенна в точке =0, поэтому мы доопределяем ее по непрерывности в точке 0: .Разделим равенство (\/) на :

F(y)=F(y(x))=Ф(x) и тогда равенство запишем в виде . Перейдем к пределу

. окажем, что , то y=f(x) непрерывна в окрестности точки , т.е. ( и стремятся к 0 одновременно), т.е. (т.к. бесконечно малая более высокого порядка, чем ), а , т.о. получим формулу .

Инвариантность формы первого дифференциала.

Дифференциал первого порядка имеет тот же самый вид: произведение производной функции на дифференциал аргумента, независимо от того, является аргумент независимой переменной или зависимой.

z-независимая переменная, y-зависит от x

Если y=f(x), то

БИЛЕТ 29. Теорема Ферма.

Теорема Ферма (необходимое условие extr):

Пусть определена на интервале (a,b) и точка если в точке функция f(x) достигает max или min значения и в точке существует производная, то f’()=0.





Дата публикования: 2015-01-26; Прочитано: 236 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...