Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Формула Тейлора для произвольной функции



Рассмотрим функцию у=ƒ(х). Формула Тейлора позволяет, при определенных условиях, приближенно представить функцию ƒ(х) в виде многочлена и дать оценку погрешности этого приближения.

Теорема 26.1. Если функция ƒ(х) определена в некоторой окрестности точки х0 и имеет в ней производные до (n+1)-го порядка включительно, то для любого х из этой окрестности найдется точка сє(х0;х) такая, что справедлива формула

Формула (26.3) называется формулой Тейлора для функции ƒ(х). Эту формулу можно записать в виде ƒ(х)=Рn(х)+Rn(x), где

называется многочленом Тейлора, а

называется остаточным членом формулы Тейлора, записанным в форме Лагранжа. Rn(х) есть погрешность приближенного равенства ƒ(х)≈Рn(х). Таким образом, формула Тейлора дает возможность заменить функцию у=ƒ(х) многочленом у=Рn(х) с соответствующей степенью точности, равной значению остаточного члена Rn(x).

При х0=0 получаем частный случай формулы Тейлора — формулу Маклорена:

где с находится между 0 и х (с=θx, 0<θ<1).

При n=0 формула Тейлора (26.3) имеет вид ƒ(х)=ƒ(х0)+ƒ'(с)(х-х0) или ƒ(х)-ƒ(х0)=ƒ'(с)(х-x0), т. е. совпадает с формулой Лагранжа конечных приращений. Рассмотренная ранее формула для приближенных вычислений ƒ(х)≈ƒ(х0)+ƒ'(х0)(х-х0) (см. «дифференциал функции») является частным случаем более точной формулы

<< Пример 26.2

Найти число е с точностью до 0,001.

Решение: Запишем формулу Маклорена для функции ƒ(х)=ех. Находим производные этой функции: ƒ'(х)=ех, ƒ"(х)=ех,..., ƒ(n+1)(х)=ех. Так как ƒ(0)=е0=, ƒ'(0)=е0=1,..., ƒ(n)(0)=1, ƒ(n+1)(с)=ес, то по формуле (26.4) имеем:

Положим х=1:

Для нахождения е с точностью 0,001 определим n из условия, что остаточный член

меньше 0,001. Так как 0<с<1, то ес<3.

Поэтому при n=6 имеем

Итак, получаем приближенное равенство

т.е.е≈2,718.

Приведем разложения по формуле Маклорена некоторых других элементарных функций:





Дата публикования: 2015-01-26; Прочитано: 631 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...