![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Выясним геометрический смысл дифференциала.
Для этого проведем к графику функции у=ƒ(х) в точке М(х; у) касательную МТ и рассмотрим ординату этой касательной для точки х+∆х (см. рис. 138). На рисунке ½ АМ½ =∆х, |AM1|=∆у. Из прямоугольного треугольника МАВ имеем:
Но, согласно геометрическому смыслу производной, tga=ƒ'(х). Поэтому АВ=ƒ'(х)•∆х.
Сравнивая полученный результат с формулой (24.1), получаем dy=АВ, т. е. дифференциал функции у=ƒ(х) в точке х равен приращению ординаты касательной к графику функции в этой точке, когда х получит приращение ∆х.
В этом и состоит геометрический смысл дифференциала.
Дата публикования: 2015-01-26; Прочитано: 334 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!