Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Непрерывность элементарных функций



Теоремы о непрерывности функций следуют непосредственно из соответствующих теорем о пределах.

Теорема 19.1. Сумма, произведение и частное двух непрерывных функций есть функция непрерывная (для частного за исключением тех значений аргумента, в которых делитель равен нулю).

▼Пусть функция ƒ(х) и φ(х) непрерывны на некотором множестве X и x0 — любое значение из этого множества. Докажем, например, непрерывность произведения F(x)=ƒ(х)•φ(х). Применяя теорему о пределе произведения, получим:

Итак, что и доказывает непрерывность функции ƒ(х)•φ(х) в точке х0. ▲

Теорема 19.2. Пусть функции u=φ(х) непрерывна в точке х0, а функция у=ƒ(u) непрерывна в точке u0=φ(хо). Тогда сложная функция ƒ(φ(х)), состоящая из непрерывных, функций, непрерывна в точке х0.

▼В силу непрерывности функции u=φ(х)

т. е.при х→х0 имеем u→u0. Поэтому вследствие непрерывности функции у=ƒ(u) имеем:

Это и доказывает, что сложная функция у=ƒ(φ(х)) непрерывна в точке х0. ▲

Теорема 19.3. Если функция у=ƒ(х) непрерывна и строго монотонна на [a;b] оси (Oх, то обратная функция у=φ(х) также непрерывна и монотонна на соответствующем отрезке [c;d] оси Оу (без доказательства).

Так, например, функция tgx=sinx/cosx. в силу теоремы 19.1, есть функция непрерывная для всех значений х, кроме тех, для которых cosх=0, т. е. кроме значений х=π/2+πn, nєZ.

Функции arcsinx, arctgx, arccosx, arcctgx, в силу теоремы 19.3, непрерывны при всех значениях х, при которых эти функции определены.

Можно доказать, что все основные элементарные функции непрерывны при всех значениях х, для которых они определены.

Как известно, элементарной называется такая функция, которую можно задать одной формулой, содержащей конечное число арифметических действий и суперпозиций (операции взятия функции от функции) основных элементарных функций. Поэтому из приведенных выше теорем вытекает: всякая элементарная функция непрерывна в каждой точке, в которой она определена.

Этот важный результат позволяет, в частности, легко находить пределы элементарных функций в точках, где они определены.

<< Пример 19.4

Найти

Решение: Функция непрерывна в точке х=p/4, поэтому





Дата публикования: 2015-01-26; Прочитано: 2873 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...