Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Теорема о вычислении поверхностного интеграла второго рода



Пусть двусторонняя поверхность. Выберем определенную сторону этой поверхности. Пусть обозначает нормаль, соответствующую выбранной стороне.

Предположим, что задано векторное поле , определенное и непрерывное на .

Определение. Величина называется поверхностным интегралом 2-го типа от векторного поля по выбранной стороне поверхности .

Этот же интеграл часто записывают так: . При этом для выбранной стороны использованы обозначения , .

Для вычисления поверхностного интеграла 2-го типа используются следующие правила.

Теорема 1. Пусть поверхность задана уравнением , где - непрерывно дифференщируемая в области функция, - непрерывная на функция. Тогда если выбрана верхняя сторона , то , а если выбрана нижняя сторона, то .

Аналогично, если задана уравнением , , где - непрерывно дифференцируемая функция на , то , если нормаль составляет с осью острый угол и , если нормаль составляет с осью тупой угол.

Если же , - непрерывно дифференцируемая на функция, а непрерывна на , то , если выбранная нормаль составляет с осью острый угол и , если нормаль составляет с осью тупой угол.

Теорема сформулирована без доказательства.

Следствие 1. Если поверхность допускает представление как в виде , так и в виде и в виде , то при условиях теоремы 1 , где выбор знака + или – перед соответствующим слагаемым в правой части равенства определяется тем, какой угол составляют нормали к выбранной стороне с соответствующей осью.

Следствие 2. Если представляет собой конечное объединение непересекающихся поверхностей, , каждая из которых удовлетворяет условиям следствия 1, то и для вычисления используется следствие 1.

Теорема 2. Пусть двусторонняя поверхность задана параметрическими уравнениями , где - непрерывно дифференцируемые функции и .

Тогда для непрерывным на функций и выбранной нормали , где, напоминаем, , , . При этом выбор знака "+" или "-" перед интегралом производится в соответствии с выбором нормали (и, следовательно, стороны) поверхности. К примеру, если указано, что нормаль составляет с осью острый угол, то знак перед интегралом совпадает со знаком .

Теорема Гаусса – Остроградского в R3





Дата публикования: 2015-01-10; Прочитано: 205 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...