Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Операции



Градиент

Для случая трёхмерного пространства градиентом скалярной функции координат , , называется векторная функция с компонентами

, , .

Дивергенция

где Ф F — поток векторного поля F через сферическую поверхность площадью S, ограничивающую объём V. Ещё более общим, а потому удобным в применении, является определение, когда форма области с поверхностью S и объёмом V допускается любой. Единственным требованием является её нахождение внутри сферы радиусом, стремящимся к нулю (то есть чтобы вся поверхность находилась в бесконечно малой окрестности данной точки, что нужно, чтобы дивергенция была локальной операцией и для чего очевидно недостаточно стремления к нулю площади поверхности и объёма ее внутренности). В обоих случаях подразумевается, что

.

Допустим, что векторное поле дифференцируемо в некоторой области. Тогда в трёхмерном декартовом пространстве дивергенция будет определяться выражением

Это же выражение можно записать с использованием оператора набла

Многомерная, а также двумерная и одномерная, дивергенция определяется в декартовых координатах в пространствах соответствующей размерности совершенно аналогично (в верхней формуле меняется лишь количество слагаемых, а нижняя остается той же, подразумевая оператор набла подходящей размерности).

Ротор

Ротор векторного поля — есть вектор, проекция которого на каждое направление n есть предел отношения циркуляции векторного поля по контуру L, являющемуся краем плоской площадки Δ S, перпендикулярной этому направлению, к величине этой площадки, когда размеры площадки стремятся к нулю, а сама площадка стягивается в точку:

.

Направление обхода контура выбирается так, чтобы, если смотреть в направлении , контур L обходился по часовой стрелке[4].

В трёхмерной декартовой системе координат ротор (в соответствии с определением выше) вычисляется следующим образом (здесь F - обозначено некое векторное поле с декартовыми компонентами , а - орты декартовых координат):

или

Оператор Гамильтона

Опера́тор на́бла (оператор Гамильтона) — векторный дифференциальный оператор, обозначаемый символом (набла) (в Юникоде U+2207, ∇). Для трёхмерного евклидова пространства в прямоугольных декартовых координатах[1] оператор набла определяется следующим образом:

,

где — единичные векторы по осям x, y, z.

Оператор Лапласа.

Опера́тор Лапла́са (лапласиа́н, оператор дельта) — дифференциальный оператор, действующий в линейном пространстве гладких функций и обозначаемый символом . Функции он ставит в соответствие функцию .

Оператор Лапласа эквивалентен последовательному взятию операций градиента и дивергенции: , таким образом, значение оператора Лапласа в точке может быть истолковано как плотность источников (стоков) потенциального векторного поля в этой точке. В декартовой системе координат оператор Лапласа часто обозначается следующим образом , то есть в виде скалярного произведения оператора набла на себя. Оператор Лапласа унитарен.

Длина кривой (дуги кривой) – это предел, к которому стремятся длины вписанных в эту кривую (дугу) ломаных при неограниченном увеличении числа их звеньев, когда длина наибольшего звена стремится к нулю.

Определение.Если множество длин вписанных в кривую L ломаных, отвечающих всевозможным разбиением Т [, ] ограничено, то кривая L называется спрямляемой.Точная верхняя грань l множества называется длиной дуги кривой L.

Площадь поверхностей

Проще всего определяется площадь многогранных поверхностей: как сумма площадей их плоских граней.

Чаще всего площадь поверхности определяют для класса кусочно гладких поверхностей с кусочно гладким краем (или без края). Обычно это делают с помощью следующей конструкции. Поверхность разбивают на мелкие части с кусочно гладкими границами: в каждой части выбирают точку, в которой существует касательная плоскость, и ортогонально проектируют рассматриваемую часть на касательную плоскость поверхности в выбранной точке; площадь полученных плоских проекций суммируют; наконец, переходят к пределу при всё более мелких разбиениях (таких, что наибольший из диаметров частей разбиения стремится к нулю). На указанном классе поверхностей этот предел всегда существует,

Потенциальное векторное поле – поле где ротор равен нулю.


Векторное поле называется соленоидальным, если через любую замкнутую поверхность S его поток равен нулю:

.

Если это условие выполняется для любых замкнутых S в некоторой области (по умолчанию - всюду), то это условие равносильно тому, что равна нулю дивергенция векторного поля :





Дата публикования: 2015-01-10; Прочитано: 368 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...