![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Пусть изучается система признаков . В результате
независимых испытаний получены значения признаков, изображенных в таблице
![]() | ![]() | ![]() | … | ![]() |
![]() | ![]() | ![]() | … | ![]() |
Требуется изучить связь между признаками и
, а именно, коррелированность и линейную зависимость, а также найти выборочное уравнение прямой регрессии
, где
и
– выборочные коэффициенты регрессии
на
, которые являются оценками теоретических коэффициентов регрессии.
Для определения коррелированности признаков и
необходимо проверить нулевую гипотезу о значимости выборочного коэффициента корреляции
. Выдвигаем гипотезу
. В качестве критерия рассматривается величина
,
где . Величина
является случайной, так как зависит от результатов испытаний. При выполнении гипотезы
она имеет распределение Стьюдента, которое зависит только от числа степеней свободы
. По результатам испытаний вычисляем наблюдаемое значение
, где
–
выборочный коэффициент корреляции (является оценкой теоретического коэффициента корреляции генеральной совокупности системы признаков
),
и
– выборочные средние по каждому признаку,
и
– выборочные среднеквадратические отклонения. Критические точки
распределения Стьюдента находятся из специальных таблиц в зависимости от заданного уровня значимости
и числа степеней свободы
. Если
, то нулевая гипотеза о равенстве нулю коэффициента корреляции принимается, выборочный коэффициент корреляции незначим, признаки
и
некоррелированы. Если
, то нулевая гипотеза отвергается, следовательно, коэффициент корреляции не равен нулю, значит, признаки
и
коррелированны.
Для построения прямой регрессии требуется определить параметры
и
. Для их нахождения используем метод наименьших квадратов, т.е. ищем минимальное значение функции суммы квадратов отклонений
.
Точки экстремума функции двух переменных находим из системы уравнений:
или
.
Решая систему, получаем искомые параметры
,
.
Уравнение прямой линии регрессии на
запишется в виде
.
Аналогично находим уравнение прямой линии регрессии на
.
Для определения значимости линейной зависимости от
в виде уравнения регрессии используется критерий Фишера. Рассмотрим следующие величины:
регрессионная сумма квадратов отклонений
характеризует отклонения наблюдений от среднего значения, объясняемых моделью регрессии. Регрессионную сумму удобно считать по формуле
,
где – выборочная дисперсия признака
.
Остаточная сумма квадратов отклонений
характеризует разброс значений в силу случайных причин, т.е. разброс, не объясненный линейной зависимостью.
Общая сумма квадратов отклонений
характеризует исходный разброс данных. Иначе
,
где – выборочная дисперсия признака
.
Введенные три суммы должны удовлетворять основному тождеству дисперсионного анализа
.
Найдем исправленные регрессионную и остаточную дисперсии по формулам
, где
,
, где
.
Для проверки нулевой гипотезы о значимости выборочного коэффициента регрессии рассмотрим величину
,
которая является случайной, так как зависит от заранее неизвестных испытаний. При выполнении гипотезы она распределена по закону Фишера с
и
степенями свободы (значение
равно единице для двумерной случайной величины
). Если
, то по данным задачи вычисляем наблюдаемое значение критерия
. По таблице критических значений распределения Фишера в зависимости от уровня значимости
и числа степеней свободы
и
находим
. Если
, то нулевая гипотеза принимается, выборочный коэффициент регрессии незначим, признаки
и
не связаны линейной зависимостью. Если
, то нулевая гипотеза отвергается, следовательно, теоретический коэффициент регрессии не равен нулю, значит, признаки
и
можно связать линейной зависимостью в виде уравнения регрессии
на
.
Замечание. Если , то это означает, что разброс, вызванный случайными причинами, поглощает в себе разброс в силу влияния регрессионной модели, следовательно, модель линейной регрессии незначима, и нулевая гипотеза принимается без использования вычисления критерия
.
Задача о зависимости системы случайных величин. Пусть известны результаты медосмотра восьми школьников: обхват груди X (см) и вес Y (кг), которые записаны в следующую таблицу
X | ||||||||
Y |
Требуется записать уравнение линейной регрессии Y на X и проверить по критериям Стьюдента и Фишера наличие коррелированности и линейной зависимости при уровне значимости .
Решение
1. Составим выборочное уравнение линейной регрессии Y на X.
Вычислим выборочные средние
,
.
Вычисляем выборочные дисперсии и среднеквадратические отклонения ,
,
,
.
Вычисляем выборочный коэффициент корреляции
.
Тогда выборочное уравнение линейной регрессии Y на X запишется в виде
или
.
На плоскости изобразим точками полученные в результате наблюдений пары значений и построим линию регрессии
![]() |
2. Проверим коррелированность X и Y, используя критерий Стьюдента. Выдвигаем нулевую гипотезу . Вычисляем наблюдаемое значение критерия Стьюдента
.
По таблице критических точек распределения Стьюдента в зависимости от уровня значимости и числа степеней свободы
находим
. Так как
, то нулевая гипотеза отвергается,
, выборочный коэффициент корреляции значим, следовательно, X и Y – коррелированные величины.
3. Проверим значимость линейной модели, используя критерий Фишера.
Выдвигаем нулевую гипотезу о равенстве нулю коэффициента регрессии. Вычисляем общую сумму ,
регрессионную сумму
и остаточную сумму, используя основное тождество дисперсионного анализа .
Вычисляем исправленные регрессионную и остаточную дисперсии
,
.
Так как , то вычисляем наблюдаемое значение критерия Фишера
.
По таблице критических значений распределения Фишера в зависимости от уровня значимости и числа степеней свободы
и
находим
. Так как
, то нулевая гипотеза отвергается, значит, линейная модель значима, и вес школьников можно представить в виде линейной зависимости от обхвата груди. Отметим, что выводы по обоим критериям согласованы.
Дата публикования: 2015-01-09; Прочитано: 996 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!