![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
Вектором называется направленный отрезок. Вектор характеризуется двумя величинами: длиной и направлением. Также вектор можно задать указав его начало и конец. Векторы обозначают следующим образом: AB,`a.
Вектор начало и конец, которого совпадают, называется нулевым. Векторы ` а и `в называются коллинеарным, если они лежат на одной прямой или на параллельных прямых.
Векторы ` а и
называются равными, если они коллинеарны, одинаково направлены и их длины равны.
Если вектор задан началом А(х1,у1) и концом В(х2;у2), то координаты вектора АВ можно определить так АВ 
Длина вектора АВ определяется как расстояние между двумя точками:
(1)
Пусть задана ось l и некоторый вектор АВ. Проекцией вектора АВ на ось l называется величина А¢В¢ на оси l. Проекция вектора АВ на ось l равна длине вектора АВ, умноженной на косинус угла между вектором АВ и осью l, т.е.
При
(2)
Направляющими косинусами вектора ` а
называются косинусы углов между вектором ` а и осями координат. Направляющие косинусы вектора `а
можно определить по формулам

Векторы можно складывать, вычитать и умножать на число.
Определение 1. Суммой
называется вектор, который идет из начала вектора
в конец вектора
при условий, что вектор
приложен к концу вектора
.
Определение 2. Разностью
векторов
и
называется вектор, который в сумме с вектором
дает вектор
.
Определение 3. Произведением
называется вектор, который коллинеарен вектору
, имеет длину, равную
и направление такое же, как и вектор
, если
>0 и противоположное, если
<0.
Пусть даны векторы
и
. Тогда сумма векторов в координатной форме записывается
,
разность векторов
,
умножение вектора на число l
.
Определение 4. Скалярным произведением двух ненулевых векторов
и
называется число, равное произведению длин этих векторов на косинус угла между ними
(4)
Если векторы
и
заданы координатами, то скалярное произведение можно вычислить по формуле
(5)
Свойства скалярного произведения векторов:
.
(переместительное свойство)
. 
. 
. 
.
, если 
Следствие. Угол между векторами
и
определяется по формуле
(6)
или
(7)
Сформируем условия параллельности и перпендикулярности двух векторов
и 
1. Векторы
и
перпендикулярны, если их скалярное произведение равно
, то есть
(8)
или
(9)
2. Векторы
и
параллельны, если их соответствующие координаты пропорциональны
(10)
Определение 5. Векторным произведением вектора
на вектор
называется вектор c, который:
и
;
,
- угол между векторами
и
;
кратчайший поворот от вектора
к вектору
виден совершающимся против часовой стрелки.Обозначается 
Геометрический смысл векторного произведения: в результате векторного произведения получается вектор, длина которого численно равна площади параллелограмма, построенного на векторах
и
как на сторонах.
Свойства векторного произведения:
1.
;
2.
;
3.
;
4.
.
Если
, тогда
.
Дата публикования: 2014-12-08; Прочитано: 336 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
