![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Задача 4.1. В результаті експериментальних вимірювань отримані наступні значення:
![]() | ||||||||
![]() | -1 | |||||||
![]() | 4,1 | 4,7 | 5,9 | 2,4 | 3,6 | 5,2 | 4,3 |
Оцінити та побудувати функцію найкращого середньоквадратичного наближення.
Розв’язок. Mathcad.
Занесемо дані у таблицю (Вставка → Дані → Таблиця), назвавши її
![]() |
змінна для нумерації елементів
впорядкуємо матрицю
за зростання значень першого стовпчика.
,
виділимо вектор аргументів та значень функції
Нанесемо точки заданої функції на координатну площину. З розташування точок очевидно, що на заданому відрізку краще застосовувати поліноміальне наближення.
Визначимо оптимальну степінь поліному. Для цього побудуємо таблицю скінченних різниць:
Із значень скінченних різниць видно, що різниця третього порядку вже не зменшує, а збільшує значення, отже оптимальною стелінню полінома буде друга степінь. Збільшення степені може не покращити наближення. А привести до збільшення похибки.
Знайдемо коефіцієнти наближення поліномом 2-го порядку:
- коефіцієнти поліному 2-го порядку
Функція повертає вектор-стовпчик значення коефіцієнтів, починаючи з 3-го елементу (перші три значення –службова інформація для функції
). Переглянемо значення коефіцієнтів вирізавши тільки необхідну інформацію:
Побудуємо апроксимуючий поліном і задамо діапазон зміни аргументу:
Виведемо початкові точки та наближення на графік:
Оцінимо середньоквадратичну похибку наближення:
MATLAB. Нехай таблично задана функція із значеннями:
>> x = [0.1 0.3 0.45 0.5 0.79 1.1 1.89 2.4 2.45];>> y = [-3 -1 0.9 2.4 2.5 1.9 0.1 -1.3 -2.6];Будемо наближати її поліномами 1-ї. 3-ї та 5-ї степені:>> p1 = polyfit(x, y, 1)p1 = -0.6191 0.6755>> p3 = polyfit(x, y, 3)p3 = 2.2872 -12.1553 17.0969 -4.5273>> p5 = polyfit(x, y, 5)p5 = -6.0193 33.9475 -62.4220 35.9698 4.7121 -3.8631Отже ми отримаємо поліноми:.
Дя побудови графіків цих наближень необхідно знайти значення у точках на проміжку
до
ю Згенеруємо 100 точок за допомогою функції
:
Розв’язок. Проведемо аналіз заданої фігури:
1) вона симетрична відносно осі ординат, отже вісь можна провести посередині фігури, побудувати її для додатних
і представити як
.
2) Для кожного значення аргументу функції може існувати лише одне значення функції, отже проведемо вісь
у крайніх горизонтальних точках фігури.
Для побудови наближення необхідно визначити вузлові точки побудувати їх таблицю.
Наближення будемо будувати 4 сплайнами:
sp1 – точки1-4; sp2 – точки7-4; sp3 – точки7-9; sp4 – точки10-11.
(На кожному відрізку повинно буди не менше 3-х точок)
Складемо розрахункову таблицю координат опорних точок
![]() | ![]() | ![]() | ![]() | |||||||||||||||||
х | х | х | х | |||||||||||||||||
у | у | -2 | -4.2 | -2,6 | у | -2 | -5 | -7 | у | -7.2 | -7,05 | -7 |
Дата публикования: 2014-11-18; Прочитано: 537 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!