Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

5 страница. № 9. Задан вектор силы и координаты точек: т



№ 9. Задан вектор силы и координаты точек: т. A (1, 1, 0) и т. B (8, 11, 6).

Найти:

а) работу заданной силы по перемещению тела из точки A в точку B;

б) модуль момента силы , приложенной в точке A, относительно точки B.

№ 10. Вычислить проекции вектора на оси координат, если A (–1, 2, 3),

B (0, 1, –2), C (–3, 4, –5).

ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ

Вариант № 23

№ 1. Найти разложение вектора по векторам:

.

№ 2. Проверить, коллинеарны ли векторы , если

.

№ 3. Даны векторы: и число .

Найти:

а) при каких значениях и векторы компланарны;

б) длину и направляющие косинусы вектора ;

в) вектор , который перпендикулярен векторам .

№ 4. Даны векторы: и число .

Вычислить:

а) скалярное произведение векторов ;

б) модуль векторного произведения ;

в) работу, совершаемую силой на пути ;

г) проекцию вектора на вектор ;

д) площадь треугольника, построенного на векторах , если начало вектора помещено

в конец вектора .

№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1 (1, 2, –3), A2 (1, 0, 1), A3 (–2, –1, 6),

A4 (0, –5, –4). Найти:

а) ; б) площадь грани A1 A2 A3; в) ;

г) ; д) объём пирамиды.

№ 6. Найти проекцию вектора на ось, определяемую вектором , если

и заданы разложением по взаимно перпендикулярным ортам и .

№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,

одноименной неизвестной координате, и задан модуль вектора .

№ 8. Найти модуль вектора , если .

№ 9. Задан вектор силы и координаты точек: т. A (1, –3, –7) и т. B (2, –1, –4).

Найти:

а) работу заданной силы по перемещению тела из точки A в точку B;

б) модуль момента силы , приложенной в точке A, относительно точки B.

№ 10. Вычислить проекции вектора на оси координат, если A (0, 3, –6),

B (9, 3, 6), C (12, 3, 3).

ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ

Вариант № 24

№ 1. Найти разложение вектора по векторам:

.

№ 2. Проверить, коллинеарны ли векторы , если

.

№ 3. Даны векторы: и число .

Найти:

а) при каких значениях и векторы компланарны;

б) длину и направляющие косинусы вектора ;

в) вектор , который перпендикулярен векторам .

№ 4. Даны векторы: и число .

Вычислить:

а) скалярное произведение векторов ;

б) модуль векторного произведения ;

в) работу, совершаемую силой на пути ;

г) проекцию вектора на вектор ;

д) площадь треугольника, построенного на векторах , если начало вектора помещено

в конец вектора .

№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1 (3, 10, -1), A2 (-2, 3, -5), A3 (-6, 0, -3),

A4 (1, -1, 2). Найти:

а) ; б) площадь грани A1 A2 A3; в) ;

г) ; д) объём пирамиды.

№ 6. Найти проекцию вектора на ось, определяемую вектором , если

и заданы разложением по взаимно перпендикулярным ортам и .

№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,

одноименной неизвестной координате, и задан модуль вектора .

№ 8. Найти модуль вектора , если .

№ 9. Задан вектор силы и координаты точек: т. A (1, 3, 7) и т. B (4, 2, 4).

Найти:

а) работу заданной силы по перемещению тела из точки A в точку B;

б) модуль момента силы , приложенной в точке A, относительно точки B.

№ 10. Вычислить проекции вектора на оси координат, если A (3, 3, –1),

B (–2, 1, 4), C (2, 3, 0).


ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ

Вариант № 25

№ 1. Найти разложение вектора по векторам:

.

№ 2. Проверить, коллинеарны ли векторы , если

.

№ 3. Даны векторы: и число .

Найти:

а) при каких значениях и векторы компланарны;

б) длину и направляющие косинусы вектора ;

в) вектор , который перпендикулярен векторам .

№ 4. Даны векторы: и число .

Вычислить:

а) скалярное произведение векторов ;

б) модуль векторного произведения ;

в) работу, совершаемую силой на пути ;

г) проекцию вектора на вектор ;

д) площадь треугольника, построенного на векторах , если начало вектора помещено

в конец вектора .

№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1 (–1, 2, 4), A2 (–1, –2, –4),

A3 (3, 0, –1), A4 (7, –3, 1). Найти:

а) ; б) площадь грани A1 A2 A3; в) ;

г) ; д) объём пирамиды.

№ 6. Найти проекцию вектора на ось, определяемую вектором , если

и заданы разложением по взаимно перпендикулярным ортам и .

№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,

одноименной неизвестной координате, и задан модуль вектора .

№ 8. Найти модуль вектора , если .

№ 9. Задан вектор силы и координаты точек: т. A (8, 1, 6) и т. B (1, 1, –1).

Найти:

а) работу заданной силы по перемещению тела из точки A в точку B;

б) модуль момента силы , приложенной в точке A, относительно точки B.

№ 10. Вычислить проекции вектора на оси координат, если A (0, 3, –6),

B (9, 3, 6), C (12, 3, 3).

ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ

Вариант № 26

№ 1. Найти разложение вектора по векторам:

.

№ 2. Проверить, коллинеарны ли векторы , если

.

№ 3. Даны векторы: и число .

Найти:

а) при каких значениях и векторы компланарны;

б) длину и направляющие косинусы вектора ;

в) вектор , который перпендикулярен векторам .

№ 4. Даны векторы: и число .

Вычислить:

а) скалярное произведение векторов ;

б) модуль векторного произведения ;

в) работу, совершаемую силой на пути ;

г) проекцию вектора на вектор ;

д) площадь треугольника, построенного на векторах , если начало вектора помещено

в конец вектора .

№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1 (0, –3, 1), A2 (–4, 1, 2), A3 (2, –1, 5),

A4 (3, 1, –4). Найти:

а) ; б) площадь грани A1 A2 A3; в) ;

г) ; д) объём пирамиды.

№ 6. Найти проекцию вектора на ось, определяемую вектором , если

и заданы разложением по взаимно перпендикулярным ортам и .

№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,

одноименной неизвестной координате, и задан модуль вектора .

№ 8. Найти модуль вектора , если .

№ 9. Задан вектор силы и координаты точек: т. A (1, 0, 3) и т. B (1, –3, 8).

Найти:

а) работу заданной силы по перемещению тела из точки A в точку B;

б) модуль момента силы , приложенной в точке A, относительно точки B.

№ 10. Вычислить проекции вектора на оси координат, если A (7, 2, 2),

B (0, 0, 3), C (–2, 5, 7).


ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ

Вариант № 27

№ 1. Найти разложение вектора по векторам:

.

№ 2. Проверить, коллинеарны ли векторы , если

.

№ 3. Даны векторы: и число .

Найти:

а) при каких значениях и векторы компланарны;

б) длину и направляющие косинусы вектора ;

в) вектор , который перпендикулярен векторам .

№ 4. Даны векторы: и число .

Вычислить:

а) скалярное произведение векторов ;

б) модуль векторного произведения ;

в) работу, совершаемую силой на пути ;

г) проекцию вектора на вектор ;

д) площадь треугольника, построенного на векторах , если начало вектора помещено

в конец вектора .

№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1 (1, 3, 0), A2 (4, –1, 2), A3 (3, 0, 1),

A4 (–4, 3, 5). Найти:

а) ; б) площадь грани A1 A2 A3; в) ;

г) ; д) объём пирамиды.

№ 6. Найти проекцию вектора на ось, определяемую вектором , если

и заданы разложением по взаимно перпендикулярным ортам и .

№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,

одноименной неизвестной координате, и задан модуль вектора .

№ 8. Найти модуль вектора , если .

№ 9. Задан вектор силы и координаты точек: т. A (–1, –2, –1) и т. B (2, 1, 2).

Найти:

а) работу заданной силы по перемещению тела из точки A в точку B;

б) модуль момента силы , приложенной в точке A, относительно точки B.

№ 10. Вычислить проекции вектора на оси координат, если A (–2, 1, 1),

B (2, 3, –2), C (0, 0, 3).

ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ

Вариант № 28

№ 1. Найти разложение вектора по векторам:

.

№ 2. Проверить, коллинеарны ли векторы , если

.

№ 3. Даны векторы: и число .

Найти:

а) при каких значениях и векторы компланарны;

б) длину и направляющие косинусы вектора ;

в) вектор , который перпендикулярен векторам .

№ 4. Даны векторы: и число .

Вычислить:

а) скалярное произведение векторов ;

б) модуль векторного произведения ;

в) работу, совершаемую силой на пути ;





Дата публикования: 2014-11-18; Прочитано: 1243 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...