Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

3 страница. № 7. Найти неизвестную координату вектора , если составляет острый угол с осью,



№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,

одноименной неизвестной координате, и задан модуль вектора .

№ 8. Найти модуль вектора , если .

№ 9. Задан вектор силы и координаты точек: т. A (1, –2, 1) и т. B (2, 2, 2).

Найти:

а) работу заданной силы по перемещению тела из точки A в точку B;

б) модуль момента силы , приложенной в точке A, относительно точки B.

№ 10. Вычислить проекции вектора на оси координат, если A (–3, –7, –5),

B (0, –1, –2), C (2, 3, 0).

ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ

Вариант № 12

№ 1. Найти разложение вектора по векторам:

.

№ 2. Проверить, коллинеарны ли векторы , если

.

№ 3. Даны векторы: и число .

Найти:

а) при каких значениях и векторы компланарны;

б) длину и направляющие косинусы вектора ;

в) вектор , который перпендикулярен векторам .

№ 4. Даны векторы: и число .

Вычислить:

а) скалярное произведение векторов ;

б) модуль векторного произведения ;

в) работу, совершаемую силой на пути ;

г) проекцию вектора на вектор ;

д) площадь треугольника, построенного на векторах , если начало вектора помещено

в конец вектора .

№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1 (2, –1, 2), A2 (1, 2, –1), A3 (3, 2, 1),

A4 (–4, 2, 5). Найти:

а) ; б) площадь грани A1 A2 A3; в) ;

г) ; д) объём пирамиды.

№ 6. Найти проекцию вектора на ось, определяемую вектором , если

и заданы разложением по взаимно перпендикулярным ортам и .

№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,

одноименной неизвестной координате, и задан модуль вектора .

№ 8. Найти модуль вектора , если .

№ 9. Задан вектор силы и координаты точек: т. A (6, 7, 4) и т. B (2, 0, –1).

Найти:

а) работу заданной силы по перемещению тела из точки A в точку B;

б) модуль момента силы , приложенной в точке A, относительно точки B.

№ 10. Вычислить проекции вектора на оси координат, если A (2, –4, 6),

B (0, –2, 4), C (6, –8, 10).

ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ

Вариант № 13

№ 1. Найти разложение вектора по векторам:

.

№ 2. Проверить, коллинеарны ли векторы , если

.

№ 3. Даны векторы: и число .

Найти:

а) при каких значениях и векторы компланарны;

б) длину и направляющие косинусы вектора ;

в) вектор , который перпендикулярен векторам .

№ 4. Даны векторы: и число .

Вычислить:

а) скалярное произведение векторов ;

б) модуль векторного произведения ;

в) работу, совершаемую силой на пути ;

г) проекцию вектора на вектор ;

д) площадь треугольника, построенного на векторах , если начало вектора помещено

в конец вектора .

№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1 (1, 1, 2), A2 (–1, 1, 3), A3 (2, –2, 4),

A4 (–1, 0, –2). Найти:

а) ; б) площадь грани A1 A2 A3; в) ;

г) ; д) объём пирамиды.

№ 6. Найти проекцию вектора на ось, определяемую вектором , если

и заданы разложением по взаимно перпендикулярным ортам и .

№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,

одноименной неизвестной координате, и задан модуль вектора .

№ 8. Найти модуль вектора , если .

№ 9. Задан вектор силы и координаты точек: т. A (–2, 0, –1) и т. B (2, 2, 1).

Найти:

а) работу заданной силы по перемещению тела из точки A в точку B;

б) модуль момента силы , приложенной в точке A, относительно точки B.

№ 10. Вычислить проекции вектора на оси координат, если A (3, 3, –1),

B (1, 5, –2), C (4, 1, 1).

ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ

Вариант № 14

№ 1. Найти разложение вектора по векторам:

.

№ 2. Проверить, коллинеарны ли векторы , если

.

№ 3. Даны векторы: и число .

Найти:

а) при каких значениях и векторы компланарны;

б) длину и направляющие косинусы вектора ;

в) вектор , который перпендикулярен векторам .

№ 4. Даны векторы: и число .

Вычислить:

а) скалярное произведение векторов ;

б) модуль векторного произведения ;

в) работу, совершаемую силой на пути ;

г) проекцию вектора на вектор ;

д) площадь треугольника, построенного на векторах , если начало вектора помещено

в конец вектора .

№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1 (2, 3, 1), A2 (4, 1, –2), A3 (6, 3, 7),

A4 (7, 5, –3). Найти:

а) ; б) площадь грани A1 A2 A3; в) ;

г) ; д) объём пирамиды.

№ 6. Найти проекцию вектора на ось, определяемую вектором , если

и заданы разложением по взаимно перпендикулярным ортам и .

№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,

одноименной неизвестной координате, и задан модуль вектора .

№ 8. Найти модуль вектора , если .

№ 9. Задан вектор силы и координаты точек: т. A (1, 0, 1) и т. B (2, –6, 8).

Найти:

а) работу заданной силы по перемещению тела из точки A в точку B;

б) модуль момента силы , приложенной в точке A, относительно точки B.

№ 10. Вычислить проекции вектора на оси координат, если A (–1, –2, 1),

B (–4, –2, 5), C (–8, –2, 2).

ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ

Вариант № 15

№ 1. Найти разложение вектора по векторам:

.

№ 2. Проверить, коллинеарны ли векторы , если

.

№ 3. Даны векторы: и число .

Найти:

а) при каких значениях и векторы компланарны;

б) длину и направляющие косинусы вектора ;

в) вектор , который перпендикулярен векторам .

№ 4. Даны векторы: и число .

Вычислить:

а) скалярное произведение векторов ;

б) модуль векторного произведения ;

в) работу, совершаемую силой на пути ;

г) проекцию вектора на вектор ;

д) площадь треугольника, построенного на векторах , если начало вектора помещено

в конец вектора .

№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1 (1, 1, –1), A2 (2, 3, 1), A3 (3, 2, 1),

A4 (5, 9, –8). Найти:

а) ; б) площадь грани A1 A2 A3; в) ;

г) ; д) объём пирамиды.

№ 6. Найти проекцию вектора на ось, определяемую вектором , если

и заданы разложением по взаимно перпендикулярным ортам и .

№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,

одноименной неизвестной координате, и задан модуль вектора .

№ 8. Найти модуль вектора , если .

№ 9. Задан вектор силы и координаты точек: т. A (–1, –2, –1) и т. B (2, 1, 2).

Найти:

а) работу заданной силы по перемещению тела из точки A в точку B;

б) модуль момента силы , приложенной в точке A, относительно точки B.

№ 10. Вычислить проекции вектора на оси координат, если A (0, 0, 4),

B (–3, –6, 1), C (–5, –10, –1).

ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ

Вариант № 16

№ 1. Найти разложение вектора по векторам:

.

№ 2. Проверить, коллинеарны ли векторы , если

.

№ 3. Даны векторы: и число .

Найти:

а) при каких значениях и векторы компланарны;

б) длину и направляющие косинусы вектора ;

в) вектор , который перпендикулярен векторам .

№ 4. Даны векторы: и число .

Вычислить:

а) скалярное произведение векторов ;

б) модуль векторного произведения ;

в) работу, совершаемую силой на пути ;

г) проекцию вектора на вектор ;

д) площадь треугольника, построенного на векторах , если начало вектора помещено

в конец вектора .

№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1 (1, 5, –7), A2 (–3, 6, 3), A3 (–2, 7, 3),

A4 (–4, 8, –12). Найти:

а) ; б) площадь грани A1 A2 A3; в) ;

г) ; д) объём пирамиды.

№ 6. Найти проекцию вектора на ось, определяемую вектором , если

и заданы разложением по взаимно перпендикулярным ортам и .

№ 7. Найти неизвестную координату вектора , если составляет острый угол с осью,

одноименной неизвестной координате, и задан модуль вектора .

№ 8. Найти модуль вектора , если .

№ 9. Задан вектор силы и координаты точек: т. A (–1, 2, –1) и т. B (4, 2, 4).

Найти:

а) работу заданной силы по перемещению тела из точки A в точку B;

б) модуль момента силы , приложенной в точке A, относительно точки B.

№ 10. Вычислить проекции вектора на оси координат, если A (3, –6, 9),

B (0, –3, 6), C (9, –12, 15).

ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ

Вариант № 17

№ 1. Найти разложение вектора по векторам:

.

№ 2. Проверить, коллинеарны ли векторы , если

.

№ 3. Даны векторы: и число .

Найти:

а) при каких значениях и векторы компланарны;

б) длину и направляющие косинусы вектора ;

в) вектор , который перпендикулярен векторам .

№ 4. Даны векторы: и число .





Дата публикования: 2014-11-18; Прочитано: 1764 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.012 с)...