![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
№ 7. Найти неизвестную координату вектора , если
составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если
.
№ 9. Задан вектор силы и координаты точек: т. A (1, –2, 1) и т. B (2, 2, 2).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (–3, –7, –5),
B (0, –1, –2), C (2, 3, 0).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
Вариант № 12
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число
.
Найти:
а) при каких значениях и векторы
компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам
.
№ 4. Даны векторы: и число
.
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути
;
г) проекцию вектора на вектор
;
д) площадь треугольника, построенного на векторах , если начало вектора
помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1 (2, –1, 2), A2 (1, 2, –1), A3 (3, 2, 1),
A4 (–4, 2, 5). Найти:
а) ; б) площадь грани A1 A2 A3; в)
;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором
, если
и
заданы разложением по взаимно перпендикулярным ортам
и
.
№ 7. Найти неизвестную координату вектора , если
составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если
.
№ 9. Задан вектор силы и координаты точек: т. A (6, 7, 4) и т. B (2, 0, –1).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (2, –4, 6),
B (0, –2, 4), C (6, –8, 10).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
Вариант № 13
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число
.
Найти:
а) при каких значениях и векторы
компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам
.
№ 4. Даны векторы: и число
.
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути
;
г) проекцию вектора на вектор
;
д) площадь треугольника, построенного на векторах , если начало вектора
помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1 (1, 1, 2), A2 (–1, 1, 3), A3 (2, –2, 4),
A4 (–1, 0, –2). Найти:
а) ; б) площадь грани A1 A2 A3; в)
;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором
, если
и
заданы разложением по взаимно перпендикулярным ортам
и
.
№ 7. Найти неизвестную координату вектора , если
составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если
.
№ 9. Задан вектор силы и координаты точек: т. A (–2, 0, –1) и т. B (2, 2, 1).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (3, 3, –1),
B (1, 5, –2), C (4, 1, 1).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
Вариант № 14
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число
.
Найти:
а) при каких значениях и векторы
компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам
.
№ 4. Даны векторы: и число
.
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути
;
г) проекцию вектора на вектор
;
д) площадь треугольника, построенного на векторах , если начало вектора
помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1 (2, 3, 1), A2 (4, 1, –2), A3 (6, 3, 7),
A4 (7, 5, –3). Найти:
а) ; б) площадь грани A1 A2 A3; в)
;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором
, если
и
заданы разложением по взаимно перпендикулярным ортам
и
.
№ 7. Найти неизвестную координату вектора , если
составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если
.
№ 9. Задан вектор силы и координаты точек: т. A (1, 0, 1) и т. B (2, –6, 8).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (–1, –2, 1),
B (–4, –2, 5), C (–8, –2, 2).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
Вариант № 15
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число
.
Найти:
а) при каких значениях и векторы
компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам
.
№ 4. Даны векторы: и число
.
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути
;
г) проекцию вектора на вектор
;
д) площадь треугольника, построенного на векторах , если начало вектора
помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1 (1, 1, –1), A2 (2, 3, 1), A3 (3, 2, 1),
A4 (5, 9, –8). Найти:
а) ; б) площадь грани A1 A2 A3; в)
;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором
, если
и
заданы разложением по взаимно перпендикулярным ортам
и
.
№ 7. Найти неизвестную координату вектора , если
составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если
.
№ 9. Задан вектор силы и координаты точек: т. A (–1, –2, –1) и т. B (2, 1, 2).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (0, 0, 4),
B (–3, –6, 1), C (–5, –10, –1).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
Вариант № 16
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число
.
Найти:
а) при каких значениях и векторы
компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам
.
№ 4. Даны векторы: и число
.
Вычислить:
а) скалярное произведение векторов ;
б) модуль векторного произведения ;
в) работу, совершаемую силой на пути
;
г) проекцию вектора на вектор
;
д) площадь треугольника, построенного на векторах , если начало вектора
помещено
в конец вектора .
№ 5. Даны координаты вершин пирамиды A1 A2 A3 A4 : A1 (1, 5, –7), A2 (–3, 6, 3), A3 (–2, 7, 3),
A4 (–4, 8, –12). Найти:
а) ; б) площадь грани A1 A2 A3; в)
;
г) ; д) объём пирамиды.
№ 6. Найти проекцию вектора на ось, определяемую вектором
, если
и
заданы разложением по взаимно перпендикулярным ортам
и
.
№ 7. Найти неизвестную координату вектора , если
составляет острый угол с осью,
одноименной неизвестной координате, и задан модуль вектора .
№ 8. Найти модуль вектора , если
.
№ 9. Задан вектор силы и координаты точек: т. A (–1, 2, –1) и т. B (4, 2, 4).
Найти:
а) работу заданной силы по перемещению тела из точки A в точку B;
б) модуль момента силы , приложенной в точке A, относительно точки B.
№ 10. Вычислить проекции вектора на оси координат, если A (3, –6, 9),
B (0, –3, 6), C (9, –12, 15).
ТИПОВОЙ РАСЧЁТ ПО ВЕКТОРНОЙ АЛГЕБРЕ
Вариант № 17
№ 1. Найти разложение вектора по векторам:
.
№ 2. Проверить, коллинеарны ли векторы , если
.
№ 3. Даны векторы: и число
.
Найти:
а) при каких значениях и векторы
компланарны;
б) длину и направляющие косинусы вектора ;
в) вектор , который перпендикулярен векторам
.
№ 4. Даны векторы: и число
.
Дата публикования: 2014-11-18; Прочитано: 1764 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!