Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Визначення нейрокомп’ютера. Основні компоненти нейрокомп’ютера



Основні компоненти нейрокомп’ютера.

Базова структура нейроприскорювача на основі ПОС.

Порівняльні характеристики нейроприскорювачів на базі ПОС.

Реалізація ШПФ на нейрокомп’ютері.

Вступ

 
 

Для кращого розуміння нейрообчислювальних систем зупинимося на найважливіших елементах нейрологіки з позиції апаратної реалізації. Однією з головних переваг нейрообчислювача є те, що його основу складають відносно прості, найчастіше - однотипні, елементи (комірки), що імітують роботу нейронів мозку - "нейрони". Кожен нейрон характеризується своїм поточним станом за аналогією з нервовими клітками головного мозку, що можуть бути збуджені чи загальмовані. Він має групу синапсів - однонаправлених вхідних зв'язків, з'єднаних з виходами інших нейронів, а також має аксон - вихідний зв'язок даного нейрона, з яким сигнал (збудження чи гальмування) надходить на синапсы наступних нейронів. Загальний вид нейрона приведений на рис.1.

Рис.1. Загальний вид нейрона.

 
 

Кожен синапс характеризується величиною синаптичного зв'язку чи його вагою wі, що по фізичному змісті еквівалентний електричній провідності. Поточний стан нейрона визначається, як зважена сума його входів:

Вихід нейрона є функція його стану: y = f(s), що називається активаційною і може мати різний вид. Однієї з найбільш розповсюджених - є нелінійна функція з насиченням, так звана логічна функція чи сигмоїд (тобто функція S-подібного виду):

 
 

Рис.2

а) одинична гранична функція;

б) лінійний поріг (гістерезис);

в) сигмоїд - гіперболічний тангенс;

г) логічний сигмоїд.

Паралелізм обробки досягається шляхом об'єднання великого числа нейронів у яруси і з'єднання певним чином різних нейронів між собою. Як приклад найпростішої НС приведемо трьох нейронний персептрон (рис.3), нейрони якого мають активаційну функцію у виді одиничної граничної функції. На n входів надходять деякі сигнали, що проходять по синапсах на 3 нейрони, що утворюють єдиний шар цієї НС і три вихідних сигнали, що видають:

 
 

Очевидно, що усі вагові коефіцієнти синапсів одного ярусу нейронів можна звести в матрицю W, у якій кожен елемент wіj задає величину і -го синаптичного зв'язку j -ого нейрона. Таким чином, процес, що відбувається в НС, може бути записаний у матричній формі: Y=F(XW), де X і Y - відповідно вхідній і вихідний сигнальні вектори, F(V) - активаційна функція, застосовувана поэлементно до компонентів вектора V. Теоретично число ярусів і число нейронів у кожному ярусі може бути довільним.

Рис.3 Одноярусний персептрон.

Для того щоб нейронная мережа працювала - її треба навчити. Від якості навчання залежить здатність мережі вирішувати поставлені перед нею проблеми. На етапі навчання крім параметра якості підбору вагових коефіцієнтів важливу роль грає час навчання. Як правило, ці два параметри зв'язані зворотньою залежністю і їх приходиться вибирати на основі компромісу. Навчання НС може вестися з вчителем чи без нього. У першому випадку мережі пред'являються значення як вхідних, так і бажаних вихідних сигналів, і вона по деякому внутрішньому алгоритмі налаштовує ваги своїх синаптичних зв'язків. В другому випадку виходи НС формуються самостійно, а ваги змінюються по алгоритму, що враховує тільки вхідні і похідні від них сигнали.

Розглядаючи класифікацію НС можна виділити: бінарні (цифрові) і аналогові НС, попередньо навчені (неадаптивні) і що самонавчаються (адаптивні) нейронні мережі, що украй важливо при їхній апаратній реалізації. Бінарні оперують із двійковими сигналами, і вихід кожного нейрона може приймати тільки два значення: логічний нуль ("загальмований" стан) і логічна одиниця ("збудженийстан). До цього класу мереж відноситься і розглянутий вище трьох нейронный персептрон, тому що виходи його нейронів, формовані функцією одиничного стрибка, рівні або 0, або 1. В аналогових мережах вихідні значення нейронів можуть приймати неперервні значення, що могло б мати місце після заміни активаційної функції нейронів персептрона на сигмоїд.

 
 

Рис. 4. Двоярусний персептрон

Мережі також можна класифікувати по топології (числу ярусів і зв'язків між ними). На рис.4 представлений двоярусний персептрон, отриманий з персептрона рис.3 шляхом додавання другого ярусу, що складається з двох нейронів.

Практично 80% реалізованих на сьогодні нейрочіпів, орієнтованих на задачі цифрової обробки сигналів, використовують при навчанні НС алгоритм зворотнього поширення помилки, крім всього інші він став деяким еталоном для виміру продуктивності нейрообчислювачів (наприклад, як ШПФ на 1024 відліки для сигнальних процесорів).





Дата публикования: 2014-11-18; Прочитано: 486 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...