Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Краткие теоретические сведения. 3 страница



Всякий геометрический вектор может быть разложен единственным образом по векторам базиса, коэффициенты разложения называются при этом координатами вектора в данном базисе. Например, если - базис и , то всегда существует единственное разложение: , где числа - координаты вектора в базисе , при этом пишут . Если в зафиксирован ортонормированный базис и , то равносильны записи: и (в записи вектора в координатной форме ортонормированный базис не указывают).

Представление геометрических векторов в координатной форме, позволяет выполнять действия над ними, как над арифметическими векторами:

;

.

Декартовой прямоугольной системой координатв пространстве называется совокупность точки (начало координат) и правого ортонормированного базиса и обозначается . Прямые , , , проходящие через начало координат в направлении базисных векторов, называются координатными осями: первая – осью абсцисс, вторая – осью ординат, третья – осью аппликат. Плоскости, проходящие через оси координат, называются координатными плоскостями. Аналогично вводится система координат на плоскости: .

Пусть - произвольная точка пространства, в котором введена система координат = . Радиус-вектором точки называется вектор , который всегда единственным образом можно представить в виде: . Числа , являющиеся координатами радиус-вектора, совпадают с проекциями вектора на базисные орты и (на координатные оси и ). Координатами точки в системе координат называются координаты её радиус-вектора и пишут . В свою очередь, координаты точки полностью определяют её радиус-вектор . Всякий геометрический вектор в системе координат , всегда можно представить как радиус-вектор некоторой точки и записать в виде: .

Длина вектора , заданного координатами , определяется формулой: . Направляющими косинусами вектора называются числа: , , , при этом .

Координаты вектора , заданного точками и определяются по формуле: . Расстояние между точками и определяется как длина вектора и находится по формуле:

.

Координаты точки делящей отрезок пополам находятся по формулам: , , .

Скалярным произведением векторов и называется число . Скалярное произведение обладает свойствами:

1) ; 2) где - число;

3) ; 4)

5) ; 6) , , , , , . Для векторов и , заданных своими координатами , скалярное произведение вычисляется по формуле: .

Скалярное произведение применяют: 1) для вычисления угла между векторами и по формуле: ; 2) для вычисления проекции вектора на вектор по формуле: ; 3) для вычисления длины вектора по формуле: ; 4) в качестве условия перпендикулярности векторов и : .

Векторным произведением векторов и называется вектор , определяемый условиями: 1) ;

2) и ; 3) - правая тройка векторов.

Упорядоченная тройка некомпланарных векторов называется правой тройкой, если из конца третьего вектора , кратчайший поворот от первого вектора ко второму , виден совершающимся против хода часовой стрелки. В противном случае, тройка называется левой.

Векторное произведение обладает свойствами:

1) ; 2) , где - число;

3) ; 4) 5) ;

6) , , , , , .

Для векторов и , заданных своими координатами , векторное произведение вычисляется по формуле: .

Векторное произведение применяют: 1) для вычисления площадей треугольника и параллелограмма, построенных на векторах и , как на сторонах, по формуле: ; 2) в качестве условия параллельности векторов и : .

Смешанным произведением упорядоченной тройки векторов , и называется число .

Смешанное произведение обладает свойствами:

1) ; 2) ;

3) ; 4) и -компланарны ;

5) , где -объём параллелепипеда, построенного на векторах , и .

Для векторов , и , заданных своими координатами , , смешанное произведение вычисляется по формуле: .

Смешанное произведение применяют: 1) для вычисления объёмов тетраэдра и параллелепипеда, построенных на векторах , и , как на рёбрах, по формуле: ; 2) в качестве условия компланарности векторов , и : и - компланарны.

Тема 8. Прямые линии и плоскости.

Нормальным вектором прямой , называется всякий ненулевой вектор перпендикулярный данной прямой. Направляющим вектором прямой , называется всякий ненулевой вектор параллельный данной прямой.

Прямая на плоскости в системе координат может быть задана уравнением одного из следующих видов:

1) - общее уравнение прямой, где - нормальный вектор прямой;

2) - уравнение прямой, проходящей через точку перпендикулярно данному вектору ;

3) - уравнение прямой, проходящей через точку параллельно данному вектору (каноническое уравнение);

4) - уравнение прямой, проходящей через две данные точки , ;

5) -уравнения прямой с угловым коэффициентом , где - точка через которую прямая проходит; () – угол, который прямая составляет с осью ; - длина отрезка (со знаком ), отсекаемого прямой на оси (знак «», если отрезок отсекается на положительной части оси и «», если на отрицательной).

6) -уравнение прямой в отрезках, где и - длины отрезков (со знаком ), отсекаемых прямой на координатных осях и (знак «», если отрезок отсекается на положительной части оси и «», если на отрицательной).

Расстояние от точки до прямой , заданной общим уравнением на плоскости, находится по формуле:

.

Угол , () между прямыми и , заданными общими уравнениями или уравнениями с угловым коэффициентом, находится по одной из следующих формул:

; .

, если или .

,если или

Координаты точки пересечения прямых и находятся как решение системы линейных уравнений: или .

Нормальным вектором плоскости , называется всякий ненулевой вектор перпендикулярный данной плоскости.

Плоскость в системе координат может быть задана уравнением одного из следующих видов:

1) - общее уравнение плоскости, где - нормальный вектор плоскости;

2) - уравнение плоскости, проходящей через точку перпендикулярно данному вектору ;

3) - уравнение плоскости, проходящей через три точки , и ;

4) -уравнение плоскости в отрезках, где , и - дины отрезков (со знаком ), отсекаемых плоскостью на координатных осях , и (знак «», если отрезок отсекается на положительной части оси и «», если на отрицательной).

Расстояние от точки до плоскости , заданной общим уравнением , находится по формуле:

.

Угол , () между плоскостями и , заданными общими уравнениями, находится по формуле:





Дата публикования: 2014-11-18; Прочитано: 252 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.017 с)...