Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Даже беглый взгляд на физическую карту Мира убеждает в том, что переходные области довольно заметно отличаются друг от друга. Одни переходные области имеют наиболее типичный облик, в них представлены и котловина окраинного моря, и островная дуга, и глубоководный желоб. В других имеется лишь глубоководный желоб, который непосредственно примыкает к подножью молодого горного сооружения краевой зоны континента, как это можно видеть у побережий Центральной и Южной Америки. Третьи характеризуются сложным сочетанием нескольких островных дуг, а также нескольких желобов и котловин. Наконец, есть и такие переходные зоны, в которых сохранились лишь реликты свойственных для них морфологических особенностей.
По особенностям строения морских котловин, глубоководных Желобов и островных дуг можно выделить 5 типов -переходных зон,
' Марианский тип. К нему относятся области, сопряженные с глу-боководными желобами Идзу-Бонин, Волкано Марианским Тонга Кермадек Все желоба очень глубоки-до 11 км. С материковой стороны онн обрамлены высокими подводными хребтами, отдельны? вулканические.вершины которых и образуют цепочки островов. Площадь островов, однако, составляет ничтожную часть от общей площади островной дуги. Котловины, отделяемые от океана глубоководными желобами и островными дугами этого № имеютjep-ты строения аналогичные строению соседних котловин океана, океанический тип земной коры, малая мощность рыхлых осадков, большая Uo 6 км) глубина В глубоководных желобах переходных Гон этого типа мощность осадков также невелика. Например, в йелобеТонга она, видимо, меньше 100 м, местами на дне желоба
0бНоГс;и%=вНаТмог0оРтДипа характеризуются значительной сейсмичностью, крупными отрицательными гравитационными аномалиями в желобах и положительными в котловинах, проявлениями
^уТиГсТиГГ^е^ходные области Курильского типа во мно
гом сходны с Марианским. Отличаются они большими размерами
островов и заметным возрастанием мощности коры в котловинах
главным образом за счет увеличения мощности осадочного слоя
Под более зрелыми островными дугами появляется гранитный
слой Характерен интенсивный вулканизм с андезитовым составом
лав В целом это очень подвижные в тектоническом отношении
области с очень частыми катастрофическими землетрясениями,
многочисленными признаками резко дифференцированных и быст
рых вертикальных движений земной коры. „OTTT,Pfh „ ™тпо-
Вследствие большой мощности осадков донный рельеф в котло
винах заметно выровнен. Положительные аномалии в котловину
несколько меньше, чем в котловинах предыдущего типа. Желобам
свойственны большие отрицательные аномалии.
Японский тип. Имеет много общего с переходными областями Курильского типа. В строении переходных областей Японского типа участвуют значительные массивы суши: крупные острова и полуострова представляющие собой результат слияния нескольких ост ровных дуг разного возраста и сложенные земной корой материкового типа. В сложении некоторых дуг участвуют весьма древние породы-вплоть до протерозоя. Глубоководные желоба несколько
Рис. 29. Схема эволюции переходных зон: А — Витязевский тип (имеется только глубоководный желоб); Б — Марианский (желоб и островная дуга); В — Курильский (двойная дуга со значительными по размеру островами); Г — Японский (крупные островные и полуостровные массивы; Д — Индонезийский подтип — крупные островные массивы, серпообразно изогнутые дуги; Е — Восточнотихоокеанский подтип (глубоководные желоба примыкают непосредственно к молодым краевым поднятиям на континенте); Ж—Средиземноморский (господствуют материковые структуры, имеются реликты глубоководных желобов и «окна» коры субокеанического типа (7): 1< —внешний хребет; 2< —глубоководный желоб; 3 — островная дуга; 4 ■—материковый склон; 5-—суша; 6 — подводные горы
мельче, чем желоба Курильского типа. Земная кора под островными массивами достигает значительной мощности (в Японии до 32 км) и имеет хорошо выраженный гранитный слой. Рельеф островов горный, характерны интенсивный вулканизм и отрицательные аномалии силы тяжести. Желоба имеют резко выраженные отрицательные аномалии.
Среди переходных областей Японского типа по морфологическим особенностям можно выделить еще два подтипа: Восточно-тихоокеанский и Индонезийский. К первому относятся Гватемальская и Перуанско-Чилийская области восточной окраины Тихого океана. Их отличительная особенность — отсутствие внутреннего
бассейна (глубоководной котловины) и островной дуги. Вместо последней выступают передовые кайнозойские хребты окраины кон* тинента. При этих условиях в глубоководные желоба поступает особенно много осадочного материала. Это способствует их заполнению и обмелению. По интенсивности вулканизма, вертикальных движений и по сейсмичности области данного типа не уступают Курильским или Японским.
К Индонезийскому подтипу относятся Индонезийская, Карибская и Южноантильская переходные области. Они характеризуются наибольшей сложностью строения. Внутри каждой из них выделяется несколько котловин, глубоководных желобов и островных дуг. В котловинах нередки крупные подводные хребты и возвышенности. Глубоководные желоба встречаются и с внутренней стороны островных дуг. Сами островные дуги имеют различный возраст и в большинстве случаев сильно изогнуты в плане. Вулканизм и сейсмичность здесь так же значительны, как и в областях, отнесенных к предыдущему подтипу.
Еще более сложно устроены переходные области Средиземноморского типа, характеристика которых даны выше (см. гл. 9). Складчатые сооружения образуют здесь острова, полуострова, дислоцированные породы слагают обширные пространства материковых гор и равнин (рис. 30).
Большинство линейно ориентированных поднятий — Альпы, Апеннины и др.— крупные и широкие складчато-глыбовые системы, состоящие из ряда слившихся антиклинориев и горст-антиклинори-ев. Между ними не всегда расположены моря, нередко это пониженные участки суши более или менее изометричных очертаний. Большинство исследователей-тектонистов считают их срединными массивами, т. е. участками древней складчатости, но не исключено, что некоторые из них сохранили еще под осадочным покровом субокеаническую кору. Примером может служить относительно небольшая мощность коры под Среднедунайской низменностью.
Одним из интересных тектонических процессов, характеризующих рассматриваемый тип переходной зоны, является «зарастание» молодыми покровными складками остаточных бассейнов с субокеанической корой. Этот процесс известен в Южном Каспии, где обнаружен ряд подводных хребтов-антиклиналей, являющихся результатом разрастания современных складок юго-восточной зоны Большого Кавказа и периферии Копетдага.
ГЛАВА 11. МЕГАРЕЛЬЕФ ЛОЖА ОКЕАНА И СРЕДИННО-ОКЕАНИЧЕСКИХ ХРЕБТОВ
Мегарельеф двух планетарных форм рельефа Земли — ложа океанов (талассократонов) и срединных океанических хребтов — целесообразно рассматривать совместно. Это связано главным образом с особенностями орографии каждого из океанов и Мирового океана в целом.
Напомним, что ложу океана присущ океанический тип земной коры, отличающийся малой мощностью (5—-10 км) и отсутствием гранитного слоя. Срединно-океанические хребты характеризуются особым типом строения земной коры — рифтогенным, на основании чего-они и выделяются в качестве особой планетарной формы.
Ложе океана соответствует в структурном отношении океаническим платформам, или талассократонам.
При взгляде на батиметрическую карту любого океана бросается в глаза ячеистость его мегарельефа. Гигантские котловины с относительно ровным или холмистым дном отделяются крупнейшими хребтами, валами, возвышенностями. Наиболее типичная океаническая кора присуща днищам котловин. На возвышенностях, как правило, мощность коры увеличивается, а в некоторых случаях ПоД типичным базальтовым слоем обнаруживается слой повышенной плотности и поверхность Мохо выделяется нечетко.
Срединно-океанические хребты морфологически представляют собой крупнейшие, вытянутые в меридиональном или субмеридиональном направлении вздутия земной коры, образующие как бы огромный (до 2000 км в ширину и до 6 км относительной высоты)
свод со сложно расчлененным рельефом склонов и особенно его осевой зоны. В осевой зоне развиты асимметричные хребты, разделенные глубокими, резко выраженными ложбинами (рис. 31) с плоским дном и крутыми бортами, вытянутыми в соответствии с общим простиранием срединно-океанического хребта. Было доказано, что эти образования — результат разрывных нарушений земной коры типа рифта, поэтому осевые зоны срединных хребтов получили наименование рифтовых зон.
Срединно-океанические хребты образуют единую планетарную систему (рис. 32). Одной из основных геолого-геофизических осей бенностей срединно-океанических хребтов, присущей только им, является чрезмерно высокое значение скоростей упругих волн в рифтовых зонах. Другая существенная геофизическая особенность зон — высокое значение теплового потока (от 3 до 10 мккал/см2-с). К числу важных черт, характерных для рифтовых зон, следует от-
Рис. 32. Планетарная система срединно-океанических хребтов:
а —подводная окраина материков; б — переходные зоны; в —ложе океана; г — срединно-океанические хребты. Цифры на карте: / —хр. Гаккеля, 2 —хр. Книповича, 3 — хр. М°иа и Кольнбейсей, 4 — хр. Рейкьянес, 5 —Североатлантический хребет, 6 — Южноатлантический, 7 — Африкано-Антарктический, 8 — Западноиндийский, 9 ~ Аравийско-Индийск!* 10 — Центральноиндийский, 11 — Австрало-Антарктический, 12 — Южнотихоокеанский, №" Восточнотихоокеанский, 14 — хребты Горда и Хуан-де-Фука
нести также высокую сейсмичность срединных хребтов и приуроченность многочисленных островных, и подводных океанических вулканов к гребням и склонам этих хребтов. Все это, а также резкая расчлененность рельефа, указывают на то, что срединно-океаниче-ские хребты представляют собой области интенсивного современного горообразования, которые, однако, существенно отличаются по протекающим в них процессам от геосинклинальных областей. Это, видимо, принципиально иной тип горообразования, хотя в последнее время тектонистами предпринимался ряд попыток связать воедино горообразование в геосинклинальных областях и в рифтовых зонах срединно-океанических хребтов.
Анализ образцов коренных пород с хребтов и из рифтовых долин срединно-океанических хребтов показал, что здесь в изобилии представлены ультраосновные породы, главным образом различные перидотиты, которыми нередко сложены целые блоки, образующие отдельные рифтовые хребты. Отсюда следует, что крупные оттор-женцы, а возможно и штоки ультраосновных пород в рифтовых зонах проникают в земную кору, смешиваются с базальтовой корой, образуя так называемый меланж. Благодаря этому значительно увеличивается общая плотность коры под рифтовыми зонами.
Обращает на себя внимание обилие серпентинитов в образцах, собранных в рифтовых зонах. Значительное и можно сказать обязательное присутствие серпентинитов говорит в пользу гипотезы, высказанной американским геофизиком X. Хессом еще в 1955 г. Образование серпентина сопровождается выделением тепла и увеличением объема масс на 25—30%. Вполне вероятно, что увеличение объема и возрастание температуры могут вызвать деформации земной коры, ее прорыв и внедрение ультраосновных пород в базальтовый слой. Вполне возможно также, что к таким участкам, где происходит серпентинизация, а следовательно, и разуплотнение породы, осуществляется подток материала из нижележащей разуплотненной, но все же более плотной зоны мантии. Это создает дополнительные источники давления, направленного вверх, повышения температуры, возможности прорыва ультраосновных масс в верхние слои земной коры и на ее поверхность.
Таким образом в зонах срединных хребтов, как и в геосинклинальных областях, идет.интенсивный процесс горообразования, процесс перестройки структуры земной коры, однако ход его и причины совершенно иные. В геосинклиналях происходят складчатость и гранитизация осадочных пород, которые, как известно, завершаются инверсией рельефа, образованием гигантских горных сооружений на месте бывшего геосинклинального бассейна. Этот процесс каким-то образом связан со сверхглубинными разломами. В рифтовых зонах срединно-океанических хребтов происходит общее вспучивание, а затем и взламывание земной коры, внедрение в нее ультраосновных пород, образование рифтовых структур. Вероятно, рифтогенезу не свойственно складкообразование. Однако некоторые исследователи, например А. В. Пейве, убеждены в том, что сре-динно-океанические хребты являются складчатыми структурами.
РЕЛЬЕФ ЛОЖА СЕВЕРНОГО ЛЕДОВИТОГО ОКЕАНА. АРКТИЧЕСКИЙ СРЕДИННЫЙ ХРЕБЕТ
Еще полтора десятка лет назад на физико-географических картах ложе Северного Ледовитого океана изображалось как единая, котловина с плоским однообразным дном. Современное представление о строении рельефа дна этого океана благодаря многолетним советским и американским исследованиям совершенно иное. Теперь установлен целый ряд подводных хребтов и возвышенностей, разделяющих Арктический бассейн на несколько котловин (рис. 33).
Вблизи полюса Арктический бассейн пересекает хребет Ломоносова, начинающийся в американском секторе близ Земли Элсмира и примыкающий к сибирскому шельфу в районе Новосибирских островов. От шельфа острова Элсмир отходит другое поднятие — плато Альфа, которое переходит в хребет Менделеева. В сибирском секторе океана этот хребет примыкает к шельфу Восточно-Сибирского моря.
Между хребтами расположены плоскодонные котловины Макарова и Толля с максимальной глубиной около 4 км. Между хребтом Менделеева и шельфом Аляски располагается другая крупная котловина— Бофорта, ее максимальная глубина 4680 м. Вблизи шельфа Аляски обнаружено несколько небольших возвышенностей, в том числе хребет Бофорта с отметкой глубины 909 м. Остальная часть дна котловины — плоская.
В Европейско-Сибирском секторе океана располагается хребет Гаккеля. Осевая часть хребта в отличие от хребтов Ломоносова и Менделеева имеет сильно расчлененный рельеф: ряд отдельных коротких хребтов разделяется глубокими рифтовыми долинами, кули-сообразно располагающимися вдоль оси хребта. В одной из долин была отмечена глубина 5335 м. Эта часть дна океана отличается также сосредоточением эпицентров землетрясений. Данные гравиметрической съемки, как и упомянутые другие особенности хребта, свидетельствуют о том, что хребет Гаккеля— самое северное звено системы срединно-океанических хребтов. Он прослеживается к югу от Шпицбергена и там переходит в срединный хребет Атлантического океана.
Между хребтом Ломоносова и Гаккеля расположена котловина Амундсена (северный полюс находится в пределах этой котловины, глубина на полюсе 4316 м). Другая котловина, лежащая к югу от хребта Гаккеля, получила название котловины Нансена. Глубина ее 5449 м. Рельеф дна обеих котловин плоский.
РЕЛЬЕФ ЛОЖА АТЛАНТИЧЕСКОГО ОКЕАНА. СРЕДИННО-АТЛАНТИЧЕСКИЙ ХРЕБЕТ
Стержневым орографическим элементом рельефа дна Атлантического океана является Срединно-Атлантический хребет, который протягивается в его пределах от района Шпицбергена на 'севере до "о ю.ш. на юге. Простирание хребта непостоянно, но в целом близ-4*
ко к меридиональному, за исключением экваториального участка, где оно на некотором протяжении становится субширотным. Ширина хребта достигает 2500 км в южной Атлантике, но к северу от Исландии сокращается до 300 км. Относительная высота Срединно-Атлантического хребта до 4 км.
Морфологически было бы правильнее называть это горное сооружение, как и другие срединно-океанические хребты, не хребтом, а горной страной или нагорьем, так как оно состоит из отдельных хребтов, горных массивов, продольных ложбин и понижений. Наиболее расчлененный и контрастный рельеф свойствен рифтовой зоне хребта, представленной сложной системой горстовых хребтов и узких грабенов — рифтовых долин, причем к последним нередко бывают приурочены глубины порядка 5—6 км. Максимальные глубины характеризуют обычно узкие поперечные впадины, связанные с секущими хребет зонами разломов. Примером такой впадины является узкая и глубокая впадина Романы (7730 м). Поперечные разломы еще больше усложняют рельеф как рифтовой зоны, так и флангов Срединно-Атлантического хребта.
Как и другим срединно-океаническим хребтам, Срединно-Атлан-тическому хребту присущ рифтогенный тип земной коры, характеризующийся высокой плотностью и отсутствием четко выраженной границы Мохо. В рифтовой зоне хребта распространены наряду с базальтами ультраосновные породы — перидотиты, дуниты. Для осевой зоны и флангов характерно чередование положительных и отрицательных магнитных аномалий, причем наиболее резко выраженная положительная аномалия отмечена в центральной рифтовой долине. Гравитационные аномалии в редукции Буге (т. е. приведенные к уровню моря) над срединным хребтом обычно положительные, но для рифтовых долин нередки резкие отрицательные аномалии.
К рифтовой зоне приурочены эпицентры землетрясений. Наибольшее сосредоточение эпицентров отмечено на участках хребта, пересекаемых широтными и субширотными разломами. Один из таких разломов пересекает хребет в районе Азорских островов. С ним связаны активные проявления современного вулканизма.
Большое число параллельных друг другу поперечных разломов отмечено в приэкваториальной части хребта. Отдельные сегменты хребта, отсекаемые этими разломами, сдвинуты относительно друг друга на многие десятки и даже сотни километров. Этими сдвигами и обусловлено общее субширотное простирание Срединно-Атлантического, хребта на его экваториальном отрезке.
Фланги хребта имеют также резко пересеченный горный рельеф и характеризуются проявлениями современного вулканизма центрального типа. Наиболее значительными современными действующими вулканами на крыльях и в рифтовой зоне хребта являются вулканы хребта Рейкьянес (отрезок срединного хребта, примыкающий к Исландии), Тристан-да-Кунья, Ян-Майен.
Ложе Атлантического океана по обе стороны от Срединного хребта сложено земной корой океанического типа. Наименьшую
мощность кора имеет под крупными океаническими котловинами/ разделенными подводными возвышенностями и хребтами с несколько повышенной толщиной земной коры. Эти котловины и возвышен-
ности имеют собственные названия, которые приведены на прилагаемой схеме (рис. 34).
Ниже в качестве примера приводится строение одной из подводных возвышенностей ложа океана — Бермудского плато, расположенного в центральной части Североамериканской котловины. Бермудское плато имеет вид горста-антеклизы, с обрывистым юго-восточным и пологим северо-западным склонами. В строении плато ярко проявляется трещинная тектоника. Крутой склон расчленен глубокими ложбинами типа подводных каньонов, представляющих собой, видимо, узкие грабены, открытые в сторону котловины. Целая сеть разломов проявляется и в рельефе поверхности плато. На пересечениях разломов возвышаются подводные вулканы. Группа наиболее высоких вулканов образует фундамент Бермудских островов, сложенных коралловыми известняками. Последние представляют собой коралловые образования, насаженные на вершины подводных вулканических гор.
Строение рельефа дна океанических котловин довольно однообразно. Почти в каждой котловине Атлантического океана выделяется два основных типа рельефа. Большая часть площади дна котловины имеет холмистый рельеф с интенсивностью вертикального расчленения в среднем 250—600 м, в некоторых случаях — до 1000 м. Этот тип рельефа получил название «рельефа абиссальных.холмов». Меньшая часть площади дна котловины почти идеально выровнена. Эти совершенно плоские пространства с ничтожными уклонами поверхности получили наименование плоских абиссальных равнин. Они обычно занимают не самые глубокие участки котловин, а те, которые расположены ближе к материковому склону и подножью. Сейсмические исследования показали, что на равнинах значительны мощности осадочного слоя — до 1,5 км, тогда как в пределах абиссальных холмов толщина осадочного слоя измеряется несколькими сотнями или даже десятками метров.
Происхождение абиссальных холмов связывают с вулканическими процессами. По мнению Г. Менарда, это частично погребенные под осадками мелкие формы вулканического происхождения типа лакколитов и щитовых вулканов. При очень малой мощности океанической коры вполне возможно образование при ее прогибании сети мелких разломов, по которым осуществляются вулканические проявления. После затухания магматического процесса происходит частичное погребение лакколита или щитового вулканического аппарата под толщей донных осадков.
РЕЛЬЕФ ЛОЖА И СРЕДИННЫХ ХРЕБТОВ ИНДИЙСКОГО ОКЕАНА
В отличие от Северного Ледовитого и Атлантического океанов в Индийском океане имеется не один, а несколько срединно-океани-ческих хребтов: Западноиндийский, Аравийско-Индийский, Цент-Ральноиндийский, переходящий к востоку от острова Амстердам
в Австрало-Антарктический (рис. 35). Все хребты, за исключением Австрало-Антарктического, сравнительно обстоятельно изучены и обнаруживают большое сходство в строении со Срединно-Атланти-
ческим хребтом. Австрало-Антарктический хребет исследован слабее. Он, по-видимому, отличается меньшим расчленением фланговых зон, меньшей высотой и слабой выраженностью рифтовой зоны. Срединные хребты Индийского океана, как и в Атлантике, разбиты не только продольными разломами, придающими своду рифто-вую структуру, но и поперечными. Однако преобладают разломы
меридионального или (реже) субширотного, но не широтного простирания. С одним из таких субширотных разломов, рассекающих южную часть Аравийско-Индийского хребта, связана максимальная глубина Индийского океана — 6400 м '. Это разлом Вима. Широкая зона тектонического дробления недавно выявлена в средней части Австрало-Антарктического хребта. Она выражена сложной системой коротких меридиональных гребней и впадин.
Наряду со срединными хребтами в Индийском океане имеется несколько крупных хребтов с океаническим типом строения земной коры и сбросово-глыбовой структурой. Самый крупный из них — Восточноиндийский хребет, начинающийся в южной части Бенгальского залива и заканчивающийся близ Центральноиндийского хребта. Эта огромная горная система (по протяжению больше Урала) была открыта в начале 60-х годов.
Упомянем о еще двух крупных глыбовых хребтах — Мальдивском и Мадагаскарском, расположенных в Западной части океана. Из них Мадагаскарский хребет, по всей вероятности, представляет собой материковую структуру и является погруженной частью Ма-дагаскарской платформы. Между о. Мадагаскаром и Аравийско-Ин-дийским хребтом расположен дугообразно изогнутый в плане Маскаренский хребет, который в северной части (район Сейшельских островов) имеет материковый тип коры. По мнению одних исследователей, это обломок некогда единого материка южного полушария — Гондваны, объединявшего еще в начале мезозоя все южные материки нашей планеты. По мнению других, это недоразвившийся материк.
Из крупнейших орографических элементов Индийского океана упомянем также вулканические плато Крозе и Кергелен. Первое из них — типичное океаническое образование. Плато Кергелен представляет собой далеко выдающийся на север выступ Антарктической материковой платформы.
Для днищ котловин Индийского океана наиболее характерен рельеф абиссальных холмов. Плоские абиссальные равнины занимают лишь очень небольшие участки дна.
РЕЛЬЕФ ЛОЖА И СРЕДИННЫХ ХРЕБТОВ ТИХОГО ОКЕАНА
В Тихом океане, площадь которого составляет почти половину всего Мирового океана, отмечается наибольшее разнообразие мегарель-ефа ложа. Срединные хребты Тихого океана (их два — Южно- и Восточнотихоокеанский) по строению напоминают Австрало-Антарктический: их широкие фланги имеют сравнительно слабо расчлененный рельеф, а рифтовая структура осевой зоны не так ярко проявляется, как в Срединно-Атлантическом или Аравийско-Индийском хребтах. Наиболее крупные черты строения срединных хребтов Ти-
1 Если не считать максимальную глубину Яванского глубоководного желоба.
хого океана связаны с секущими их вкрест простирания мощными разломами. По разломам срединный хребет разбит на целый ряд сегментов параллелепипедальных очертаний, сдвинутых относительно друг друга по латерали1. Геофизические черты строения срединных хребтов Тихого океана аналогичны описанным для других срединно-океанических хребтов.
Между 40 и 30° ю. ш. от Восточнотихоокеанского хребта на юго-восток отходит Западночилийский хребет, имеющий рифтовую структуру и отличающийся сейсмичностью и проявлениями вулканизма, в связи с чем его можно гипотетически считать.ответвлением срединно-океанической системы. Севернее экватора в осевой зоне Восточнотихоокеавского хребта начинают проявляться черты риф-товой структуры.
Калифорнийский залив, по-видимому, представляет собой рифтовую зону на участке перехода рифтовой структуры на западную окраину Северо-Американского материка. Земная кора как Южнотихоокеанского, так и Восточнотихоокеанского хребтов рифтоген-ного типа.
Другие линейновытянутые орографические элементы дна Тихого океана характеризуются океаническим типом земной коры. Они имеют вид крупных валов, на сводах которых насажены вулканы, в ряде случаев образующих целые вулканические цепи. Наиболее грандиозен из них по протяженности, высоте и бурным проявлениям вулканизма океанического типа Гавайский хребет, увенчанный одноименными островами. Вулканы этих хребтов щитовые и извергают магму основного состава.
Расположение крупнейших орографических элементов ложа Тихого океана показано на рис. 36.
В Тихом океане распространены также океанические валы, на гребнях которых возвышаются плосковершинные горы — гайоты. Морфологически это конусы с усеченной вершиной. Наиболее характерный вал с гайотами Маркус-Неккер протягивается в широтном направлении от южной части Гавайских островов на запад к островам Бенин и Волкано. Глубина над вершинами многих гайотов достигает 2,5 тыс. метров (в среднем 1300 м). Такая глубина, очевидно, указывает на погружение гайотов, так как предполагать столь значительное понижение уровня океана в прошлом нет оснований (рис. 37).
Другие океанические сводовые поднятия имеют горные вершины., увенчанные коралловыми постройками — кольцевыми рифами, или атоллами. По данным геофизических исследований, горы, послужившие основаниями для коралловых рифов, также являются вулканическими образованиями. Интересно, что большая часть океанических сводовых хребтов и с вулканическими цепями, и с гайотами, и с коралловыми рифами приурочены к широкой полосе, пересекающей Тихий океан с юго-востока на северо-запад, от района
1 Лат. lateralis — боковой, указывает на смещение сходных форм рельефа i сторону («вбок») относительно друг друга.
острова Пасхи до Северо-Западной котловины включительно. По мнению Г. Менарда, океанические, поднятия являются остатками древнего срединно-океанического хребта, который в конце мела — начале палеогена подвергся разрушению в результате мощных тек»
тонических процессов. По глубоким разломам происходили бурные вулканические извержения, а затем крупные участки хребта испытали погружение, возник лабиринт котловин, горных поднятий, вулканов, гайотов и коралловых атоллов — исключительно сложный рельеф центральной и северо-западной частей ложа Тихого оке-
ана. О масштабах вулканических процессов того времени свидетельствует общий объем выброшенного вулканического материала. Он, по подсчетам Г. Менарда, оказался в десятки раз больше, чем суммарный объем эффузивов, слагающих лавовые плато Британской Колумбии и Декана. Вулканическим материалом сложены у подножий подводных хребтов (уцелевших остатков срединного хребта) шлейфы в виде наклонных абиссальных равнин, получив-
айсбергами, образующимися благодаря стеканию льда с Антарктического ледникового щита.
Для ложа Тихого океана очень характерны глубинные разломы широтного простирания, прослеживающиеся на протяжении нескольких тысяч километров. Они выражены в рельефе дна котловин в виде вытянутых с запада на восток узких глыбовых хребтов-горстов и сопровождающих их ложбин-грабенов. Разломы пересекают также Восточнотихоокеанский и Южнотихоокеанский хребты, причем отдельные сегменты хребтов, как уже упоминалось, сдвинуты относительно друг друга на сотни километров. Таким образом, и в Тихом и в Атлантическом океанах имеются бесспорные признаки значительных горизонтальных движений земной коры.
Тем не менее главное значение в развитии мегарельефа дна океанов вообще и Тихого в частности принадлежит, по-видимому, вертикальным движениям земной коры. Для срединных хребтов основную роль играют положительные, а для ложа океана — отрицательные движения. Особо следует отметить, что отрицательные движения характерны не только для котловин, но и для большинства положительных форм рельефа ложа океана. Об этом свидетельствует нахождение гайотов на значительных глубинах, в десятки раз превышающих возможный размах колебаний уровня океана, и большая мощность коралловых известняков, слагающих океанические атоллы. Бурение на некоторых атоллах Тихого океана показало, что общая мощность коралловых отложений, начиная с эоцена, достигает 1400 м, а рифообразующие кораллы могут обитать лишь на глубинах до 50 м. Собственные колебания уровня океана за счет таяния ледниковых покровов не превышают ПО м. Данные глубоководного бурения также свидетельствуют о значительных вертикальных движениях (преимущественно отрицательных) дна океана. По-видимому, за кайнозой средняя величина погружения дна океана составила около 1 км.
ших название «островных шлейфов». Эти шлейфы — один из специфических типов рельефа окраинных частей котловин ложа Тихого океана.
Поскольку ложе Тихого океана почти всюду отделено от материков глубоководными желобами, поступление терригенного материала с суши в Тихий океан очень невелико. В результате в Тихом океане днища котловин имеют малую мощность осадков, всюду преобладает рельеф абиссальных холмов. Только в пределах залива Аляски имеется обширная плоская абиссальная равнина, но и здесь рассеяны -многочисленные гайоты. Кроме того, обширная абиссальная равнина занимает большую часть приантарктической котловины Тихого океана — котловины Беллинсгаузена. Широкое развитие абиссальных равнин характерно также и для приантарктических котловин Индийского и Атлантического океанов. Это связано со значительным приносом терригенного материала плавучими льдами-108
ЧАСТЬ Ш. ЭКЗОГЕННЫЕ ПРОЦЕССЫ И РЕЛЬЕФ
Выше были рассмотрены эндогенные процессы, обусловленные внутренними силами Земли и некоторые созданные ими формы рельефа. Однако в «чистом», первозданном виде эндогенные формы встречаются редко. Начиная с момента зарождения и в процессе развития, они постоянно подвергаются воздействию экзогенных процессов, источником энергии которых является энергия, получаемая нашей планетой извне, главным образом от Солнца. Несмотря на ведущую рельефообразующую роль эндогенных процессов, создающих различного рода неровности на поверхности Земли и направляющих деятельность экзогенных процессов, роль последних в рельефообразовании огромна и соизмерима с ролью эндогенных процессов. Тот сложный и многообразный рельеф, который наблюдается на поверхности Земли, есть функция взаимодействия эндогенных и экзогенных процессов. Что касается форм микро- и мезорельефа, а в ряде случаев и макрорельефа, с которыми чаще всего приходится иметь дело в повседневной практике, то в подавляющем большинстве они являются результатом деятельности экзогенных сил. Отсюда становится понятной важность познания закономерностей экзогенного рельефообразования, конкретных форм и комплексов форм рельефа, создаваемых различными экзогенными агентами.
В главе «Рельеф и климат» говорилось о том, что от климата зависят «набор» и степень интенсивности действующих экзогенных сил, что в разных климатических условиях возникают разные формы и комплексы форм рельефа, что экзогенный рельеф подчиняется широтной географической зональности и высотной поясности. Короче говоря, экзогенный рельеф может дать значительную информацию об условиях, в которых он образовался. Это свойство экзогенного рельефа может быть широко использовано и используется при палеогеографических реконструкциях. Фактический материал для таких реконструкций дают реликтовые формы рельефа.
Экзогенные процессы рельефообразования заслуживают большого внимания еще и потому, что они характеризуются высокими скоростями: мы видим, как на наших глазах растут овраги, как изменяется облик речных долин после паводков или прохождения по ним селей, как отступают морские берега в одних местах и наращиваются в других, как меняется облик рельефа под влиянием хозяйственной деятельности человека. Все это заставляет, во-первых,
учитывать деятельность экзогенных процессов в практике повседневной жизни и, во-вторых, тщательно изучать закономерности экзогенного рельефообразования.
Суммарный эффект деятельности экзогенных агентов заключается в перемещении вещества с более высоких гипсометрических уровней на более низкие, хотя имеются и отклонения от этого правила. Перемещение вещества происходит при непременном участии силы тяжести, которая оказывает либо прямое влияние на него (в случае обвалов, осыпей, оползней и т. д.), либо опосредствованное, через деятельность текучих вод, ветра, ледников и т. д. Участие в каждом экзогенном процессе силы тяжести, фактора, по своему существу эндогенного, делает деление рельефообразующих процессов на эндогенные и экзогенные до некоторой степени условным и еще более подчеркивает взаимосвязь и взаимообусловленность эндогенного и экзогенного рельефообразования.
Перечень и краткая характеристика экзогенных процессов были даны выше (см. с. 20). В этом разделе они рассматриваются более подробно.
ГЛАВА 12. ВЫВЕТРИВАНИЕ И РЕЛЬЕФООБРАЗОВАНИЕ
Каждый рельефообразующий процесс — это прежде всего процесс динамики вещества, слагающего литосферу Земли. Но в отличие от эндогенных факторов способных перемещать целые блоки земной коры, экзогенные факторы осуществляют этот процесс при непременном условии дезинтеграции горных пород1. Поэтому, по существу, начальным этапом любого экзогенного процесса является подготовка горной породы к дезинтеграции, измельчению. Совокупность процессов-; осуществляющих дезинтеграцию горных пород, называют выветриванием.
В зависимости от факторов, воздействующих на горные породы, и результатов воздействия процессы выветривания подразделяются на два типа — физическое и химическое выветривание. Оба типа выветривания тесно связаны друг с другом, действуют совместно, и только интенсивность проявления каждого из них, обусловленная целым рядом факторов (климатом, составом пород, рельефом и т. д.), в разных местах неодинакова.
Иногда выделяют еще один тип выветривания — органогенное, связанное с воздействием на горные породы растительных и животных организмов. Однако выделять органогенное выветривание в самостоятельный тип, по-видимому, нет необходимости, так как воздействие организмов на горные породы всегда можно свести к процессам физического или химического выветривания.
1 Дезинтеграция горных пород — распадение их на обломки различной величины без изменения состава.
Ill
ФИЗИЧЕСКОЕ ВЫВЕТРИВАНИЕ
Физическим выветриванием называется дезинтеграция горной породы, не сопровождающаяся химическими изменениями ее состава. В зависимости от главного действующего фактора и характера разрушения горных пород физическое выветривание делят на температурное и механическое.
Температурное выветривание происходит без участия внешнего механического воздействия и вызывается изменением температуры. Интенсивность температурного выветривания зависит от состава породы, ее строения (текстуры и структуры), а также от окраски, трещиноватости и ряда других факторов.
Большое значение при температурном выветривании имеют амплитуда и особенно скорость изменения температуры. Поэтому суточные колебания температуры при выветривании играют большее значение, нежели сезонные.
Температурное выветривание наблюдается во всех климатических зонах, но наиболее интенсивно оно протекает в областях, характеризующихся резкими контрастами температур, сухостью воздуха, отсутствием или слабым развитием растительного покрова. Такими областями являются прежде всего тропические и внетропи-ческие пустыни. Интенсивно температурное выветривание протекает также на крутых склонах высоких гор.
Механическое выветривание происходит под воздействием таких факторов, как замерзание воды в трещинах и порах горных пород, кристаллизация солей при испарении воды. Как видно из сказанного, оно тесно связано с температурным выветриванием.
Особенно сильный и быстрый механический разрушитель горных пород — вода. При ее замерзании в трещинах и порах горных пород возникает огромное давление, в результате которого порода распадается на обломки. Это явление часто называют морозным выветриванием. Предпосылками морозного выветривания служат тре-щиноватость горных пород, наличие воды и соответствующие температурные условия.
Следует отметить, что интенсивность морозного выветривания определяется не амплитудой, а частотой колебания температуры около точки замерзания воды, т. е. около 0°. Вследствие этого наиболее интенсивно морозное выветривание происходит в полярных странах, а также в горных районах, преимущественно выше снеговой границы.
Раздробляющее действие кристаллизующихся солей заметнее наблюдается в условиях жаркого, сухого климата. Здесь днем при сильном нагревании солнцем влага, находящаяся в капиллярных трещинах, подтягивается к поверхности, и соли, содержащиеся в ней, кристаллизуются. Под давлением растущих кристаллов трещины расширяются, что приводит в конечном счете к нарушению монолитности горных пород, к их разрушению.
Разрушению горных пород способствуют намокание и высыхание (этот фактор особенно важен для глин, суглинков, мергелей), 112
а также физическое воздействие организмов (корней растений, зем-лероев, камнеточцев).
В результате физического выветривания компактные породы распадаются на остроугольные обломки различной формы, величины, т. е. образуется материал, из которого формируются осадочные обломочные породы — глыбы, щебень, дресва.
По мере дробления горных пород интенсивность физического выветривания ослабевает и создаются все более благоприятные условия для химического выветривания.
ХИМИЧЕСКОЕ ВЫВЕТРИВАНИЕ
Химическое выветривание есть результат взаимодействия горных пород наружной части литосферы с химически активными элементами атмосферы, гидросферы и биосферы. Наибольшей химической активностью обладают, как известно, кислород, углекислый газ, вода, органические кислоты. С воздействием этих веществ на горные породы и связано в основном химическое выветривание, сущность которого заключается в коренном изменении минералов и горных пород и образовании новых минералов и пород, отличных от первоначальных. Изменение исходных минералов и горных пород, их разрушение и разрыхление (наблюдаемое, правда, не всегда) происходит в результате растворения, гидратации, окисления и гидролиза.
Химическое выветривание наблюдается повсеместно. Однако наиболее интенсивно оно протекает в областях с влажным климатом и хорошо развитым растительным покровом. Интенсивность процесса резко возрастает с повышением температуры. Поэтому химическое выветривание достигает максимальной интенсивности в зоне влажных тропических лесов. Оно резко замедляется в полярных областях, где средняя температура года ниже 0°. Ослаблено химическое выветривание в аридных тропических и субтропических областях вследствие малого количества осадков и на крутых склонах гор из-за быстрого удаления продуктов выветривания.
В результате химического выветривания образуются растворимые и тонкодисперсные продукты выветривания, обладающие повышенной миграционной способностью.
КОРЫ ВЫВЕТРИВАНИЯ
Продукты выветривания в одних случаях могут быстро удаляться с поверхности породы по мере их образования, в других — накапливаться на поверхности, в третьих — уже накопившиеся продукты выветривания могут быть удалены на последующей стадии развития территории.
Совокупность остаточных (несмещенных) продуктов выветривания называют корой выветривания. Существует целый ряд классификаций кор выветривания. Большинство авторов выделяют следу-
ющие типы кор: а) обломочная, состоящая из химически неизмененных или слабо измененных обломков исходной породы; б) гидрослюдистая кора, характеризующаяся слабыми химическими изменениями коренной породы, но уже содержащая глинистые минералы — гидрослюды, образующиеся за счет изменений полевых шпатов и слюд; в) монтмориллонитовая кора, отличающаяся глубокими химическими изменениями первичных минералов; главный глинистый минерал — монтмориллонит; г) каолинитовая кора; д) красноземная и е) латеритная. Последние два типа коры представляют собой результат длительного и интенсивного выветривания с полным изменением первичного состава исходных пород.
Каждый из выделенных выше типов кор выветривания имеет зональный характер. Обломочные коры преобладают в полярных и высокогорных областях, а также в каменистых пустынях низких широт. Гидрослюдистые коры характерны для холодных и умеренных областей с вечной мерзлотой. Монтмориллонитовая кора образуется в степных и полупустынных областях, каолинитовая и красноземная наиболее характерны для субтропиков и, наконец, латеритная кора формируется при наиболее активном химическом выветривании в условиях жаркого и влажного экваториального климата.
Изложенное выше дает возможность перейти к оценке роли выветривания в рельефообразовании.
Само выветривание не образует каких-либо специфических форм рельефа. Однако, будучи самым постоянным и мощным фактором дезинтеграции горных пород, выветривание готовит рыхлый материал, который становится доступным для перемещения другими экзогенными агентами, или перемещается на более низкие гипсометрические уровни под непосредственным воздействием силы тяжести. Именно в этом аспекте роль выветривания как фактора рельефо-образования огромна.
В некоторых случаях в процессе выветривания происходит не разрыхление, а цементация рыхлых пород. Так, в условиях жаркого и сухого климата наблюдается цементация рыхлых поверхностных образований углекислой известью, гипсом или поваренной солью. В областях с несколько большим количеством осадков преобладает известковый цемент, с увеличением аридности климата углекислая известь заменяется гипсом. Мощность известково-гипсо-вых кор достигает 2 м.
Еще более мощные коры образуются в условиях тропического климата с четко выраженными сухим и влажным сезонами года. Здесь коры образуются за счет цементации окислами железа, реже — алюминия. Подобные коры выполняют роль бронирующего пласта, предохраняя нижележащие рыхлые образования от эрозии и дефляции. В ряде случаев наличие мощных железистых кор способствует формированию инверсионных форм рельефа.
Неперемещенные, остаточные коры выветривания могут «фиксировать» ранее сформированные выровненные денудационные поверхности. Изучение этих кор позволяет, во-первых, восстанйвли-
вать палеогеографическую обстановку их формирования и, во-вторых, определять время- «фиксации» денудационного рельефа (см. с 24).
Эффект применения геоморфологических методов для выявления пространственного положения «фиксированных» денудационных поверхностей и условий их образования позволяет широко использовать эти методы для поиска целого ряда ценных полезных ископаемых (бокситов, железных, никелевых и кобальтовых руд, россыпей цветных металлов и т. п.), связанных с корами выветривания.
ГЛАВА 13. СКЛОНЫ, СКЛОНОВЫЕ ПРОЦЕССЫ И РЕЛЬЕФ СКЛОНОВ
понятие «склон», классификация склонов
Как уже упоминалось, рельеф земной поверхности состоит из сочетания склонов и субгоризонтальных поверхностей. Согласно С. С. Воскресенскому, к склонам следует относить такие поверхности, на которых в перемещении вещества определяющую роль играет составляющая силы тяжести, ориентированная вниз по склону. При углах наклона 1—2° составляющая ускорения силы тяжести, стремящаяся сместить частицы вниз по склону, еще очень мала, и такие поверхности к склонам не относятся. Но даже без них на долю склонов приходится более 80% всей поверхности суши. Уже этим определяется важность изучения генезиса склонов и происходящих на них процессов.
Силе тяжести на склонах противостоят силы сцепления частиц рыхлых пород между собой и с подстилающими невыветрелыми коренными породами. Соотношение составляющей силы тяжести и сил сцепления определяет ход процессов, происходящих на склонах. Соотношение, зависящее от многих факторов, бывает разным. Это является причиной разнообразия склоновых процессов, о чем будет сказано ниже. О перемещении вещества на склонах можно судить на основании непосредственных полевых наблюдений, а в случае малых скоростей этих процессов — на основании изучения морфологии склонов и строения склоновых отложений.
Процессы, протекающие на склонах, ведут к перемещению, а при благоприятных условиях — к накоплению продуктов выветривания, т. е. к образованию как выработанных, так и аккумулятивных форм рельефа. Склоновая денудация является одним из основных экзогенных факторов формирования рельефа и основным поставщиком материала, из которого образуются потом аллювиальные, ледниковые, морские и другие генетические типы отложений.
Существует тесная взаимосвязь между выветриванием и склоновыми процессами: быстрое удаление со склонов рыхлых продуктов выветривания обнажает «свежую» породу и тем самым способствует усилению выветривания. Медленная денудация склонов, на-
против, приводит к накоплению продуктов выветривания, которое затрудняет дальнейшее выветривание коренных пород, но способствует интенсификации склоновых процессов. Таким образом, отмечает С. С. Воскресенский, темп склоновых процессов определяет в конечном счете быстроту денудации.
В последнее время изучению склонов и склоновых процессов уделяется очень большое внимание. Это изучение имеет как научный интерес (позволяет установить генезис и историю развития рельефа), так и огромное практическое значение. Изучение склонов и склоновых процессов особенно важно при прикладных исследованиях, ставящих своей задачей борьбу с эрозией почв, при изысканиях
под строительство сооружений на склонах, при поисках месторождений различных полезных ископаемых и ъ д,
Особенности формирования склонов находят свое выражение прежде всего в морфо-
логии, т. е. во внешних особенностях склонов: крутизне, длине, форме. По крутизне склоны делят на крутые (а^35°), склоны средней крутизны (а=35—15°), отлогие склоны (а=15—5°), очень отлогие склоны (а = 5—2°). Такое деление имеет некоторый генетический смысл и дает возможность судить о характере и интенсивности современных склоновых процессов.
По длине склоны делят на длинные (/>500 м), склоны средней длины (/=500—50 м), короткие склоны (/<50 м). Длина склонов обусловливает различную степень увлажнения склоновых отложений, а от степени увлажнения зависит интенсивность хода почти всех склоновых процессов.
По форме профиля склоны могут быть прямыми, выпуклыми, вогнутыми, выпукло-вогнутыми (рис. 38). Поверхность каждого из перечисленных склонов может быть осложнена ступенями, повышениями и понижениями неправильных очертаний и т. д. Форма профиля склонов несет особенно большую информацию о процессах, происходящих на них, а иногда дает возможность судить о характере взаимодействия эндогенных и экзогенных сил.
Наклоненные участки поверхности Земли (склоны) возникают в результате деятельности или эндогенных или экзогенных сил. В соответствии с этим все склоны могут быть подразделены на склоны эндогенного и экзогенного происхождения.
Склоны эндогенного происхождения могут быть образованы в результате тектонических движений земной коры, магматизма, землетрясений. Склоны тектонического генезиса могут возникать в результате колебательных движений земной коры, складчатых или разрывных нарушений. Склоны, связанные с проявлением магматизма, могут быть обусловлены проявлением как интрузивного, так
и эффузивного магматизма. С известной долей условности к склонам эндогенного происхождения можно отнести склоны, созданные деятельностью грязевых вулканов (псевдовулканические).
Среди склонов экзогенного происхождения в соответствии с действующими экзогенными факторами могут быть выделены склоны, созданные поверхностными текучими водами (флювиальные склоны), деятельностью озер, морей, ледников, ветра, подземных вод и мерзлотных процессов. К этой же группе следует отнести склоны, созданные организмами (коралловые рифы), а также склоны, являющиеся результатом хозяйственной деятельности человека. Нередко склоны могут быть созданы совокупной деятельностью двух или нескольких экзогенных агентов.
Склоны экзогенного, а также вулканического и нсевдовулканиче-ского происхождения могут быть образованы как за счет выноса, так и за счет накопления материала, и в соответствии с этим подразделяться на склоны денудационные (выработанные) и аккумулятивные. Денудационные склоны, в свою очередь, можно подразделить на структурные, пространственно совпадающие с падением и простиранием отпрепарированных стойких пластов, и аструктур-ные склоны, у которых такого совпадения нет.
Склоны, возникающие в результате перечисленных выше процессов, не остаются неизменными, а преобразуются под воздействием целого ряда процессов. Именно эти процессы Ю. Г. Симонов называет склоновыми в отличие от склоноформирующих процессов, в результате которых образуются исходные (первичные) наклонные поверхности. В природе эти процессы тесно взаимосвязаны. Уже в самом начале образования наклонные поверхности подвергаются воздействию тех или иных склоновых процессов, поэтому морфологический облик подавляющего большинства склонов является результатом совместного воздействия склоноформирующих и склоновых процессов. Лишь в некоторых случаях процессы образования и преобразования склонов разорваны во времени. Примером такого рода может быть образование уступа во время землетрясения и последующее его преобразование склоновыми процессами и др.
В зависимости от морфологических особенностей склонов, состава и мощности рыхлых отложений на склонах, а также от конкретных физико-географических условий склоновые процессы отличаются большим разнообразием. По особенностям склоновых процессов С. С. Воскресенский выделяет следующие типы склонов.
1. Склоны собственно гравитационные. На таких склонах кру
тизной 35—40° и более обломки, образующиеся в результате про
цессов выветривания, самопроизвольно (под действием силы тяже
сти) скатываются к подножью склонов. К ним относятся обвальные,
осыпные, а также лавинные склоны.
2. Склоны блоковых движений. Образуются при смещении вниз
по склону блоков горных пород разных размеров. Смещению бло
ков в значительной мере способствуют подземные воды, хотя роль
гравитации остается значительной. Крутизна таких склонов колеб-
лется от 20 до 40°. К ним относятся оползневые, склоны оползней-сплывов и склоны отседания.
3. Склоны массового смещения чехла рыхлого материала. Харак
тер смещения грунта зависит от его консистенции (состояния, лат.
consistere — состоять), обусловленной количеством содержащейся
в грунте воды. Массовое смещение материала происходит на скло
нах разной крутизны: от 40 до 3°. К склонам массового смещения
материала относятся солифлюкционные, склоны медленной соли-
флюкции, дефлюкционные (крип) и др.
4. Склоны делювиальные (плоскостного смыва). Делювиальные
процессы зависят от целого ряда факторов, и в первую очередь
•от состояния поверхности склонов. Они наблюдаются и на крутых
и на очень пологих (2—3°) склонах.
СКЛОНОВЫЕ ПРОЦЕССЫ И РЕЛЬЕФ СКЛОНОВ
Рассмотрим более подробно некоторые процессы, происходящие на склонах, и их морфологические результаты.
Обвальные склоны. Обвалом называется процесс отрыва от основной массы горной породы крупных глыб и последующего их перемещения вниз по склону. Образованию обвала предшествует возникновение трещины или системы трещин, по которым затем происходит отрыв и обрушение блока породы. Морфологическим результатом обвалов является образование стенок (плоскостей) срыва и ниш в верхних частях склонов и накопление продуктов обрушения у их подножий.
Стенки срыва представляют собой довольно ровные поверхности, часто совпадающие с плоскостями разломов и границами пластов. Они наблюдаются на склонах крутизной 30—40°. Ниши формируются на более крутых склонах. Крутизна их стенок достигает 90°, иногда ниши ограничены нависающими карнизами. Четко выраженные ниши напоминают по внешнему виду огромные цир-ковидные чаши.
Аккумулятивная часть обвального склона обладает беспорядочным холмистым рельефом с высотой холмов от нескольких метров до 30 м, реже больше. Сложена она крупнообломочным материалом. Размер обломков колеблется от десятков сантиметров до десятков метров.
Обвалы наблюдаются как в горах, так и на равнинах. Наиболее грандиозны обвалы в горах. Так, при обвале в долине реки Мургаб -{Западный Памир, 1911) объем обрушившейся породы составил ■более 2 км3, а ее масса — около 7 млрд. т. Если сравнить эту массу •с твердым стоком Волги (около 25 млн. т/год), то по масштабам рельефообразующего процесса обвал в долине Мургаба эквивалентен объему материала, вынесенному Волгой за 280 лет. Еще более грандиозные по масштабам обвалы имели место в Альпах. По данным А. Герхарда, объем наиболее крупного из них около 15 км3, а площадь, занятая обвальными массами, 49 км2.
Обвалы в горах часто приводят к перегораживанию речных долин и образованию озер. Таково происхождение озера Рица на Кавказе, озера Иссык в Заилийском Алатау, Сарезского — на Памире и множества других в любом высокогорном районе мира.
Крупные обвальные массы распадаются на множество обломков разной величины и движутся вниз по склону к его подошве, где и откладываются или по инерции продолжают двигаться по дну долины. Известны случаи, когда обвальные массы продвигались па крутым уклонам узких горных долин на расстояние 7—12 км. При
ГТГ» TJ^TZGUTJI IT ТЗ ТТГь TT~U ПАЛ Т.Г tJ
движении вдоль долин.каменные потоки -производят значительную работу по изменению поверхности склонов долин. По данным С. Н. Матвеева, поток скалистых обломков в одной из альпийских долин выработал борозду глубиной шесть — десять метров при ширине 10— 20 м.
Обвалы небольших масс породы, состоящей из обломков размером не более 1 м3, называют камнепадами. Следует заметить, что обвалы и камнепады вместе с осыпями и лавинами осуществляют едва ли не
нами осуществляют едва ли we основную работу по денудации склонов гор. По данным М. PL Иве-роновой, скорость денудации в Тянь-Шане только за счет камнепадов составляет 0,17 мм в год.
Осыпные склоны. Образование осыпей связано преимущественно с физическим выветриванием. Наиболее типичные осыпи наблюдаются на склонах, сложенных мергелями или глинистыми сланцами. У классически выраженной осыпи различают осыпной склон, осыпной лоток и конус осыпи. Осыпной склон сложен обнаженной породой, подвергающейся физическому выветриванию. Продукты выветривания — щебень, дресва, перемещаясь вниз по склону, оказывают механическое воздействие на поверхность склона и вырабатывают в нем желоб — осыпной лоток глубиной 1—2 м при ширине в несколько метров. В нижних частях денудационных участков склонов желоба объединяются в более крупные ложбины, ширина которых может достигать десятков метров. Талые и дождевые воды еще более углубляют желоба, расчленяют денудационную часть склонов, бровка склона становится фестончатой (рис. 39). Иногда рельеф денудационной части осыпных склонов оказывается очень сложным, образованным системой башен, колонн и т. п.
Движение обломков на осыпных склонах продолжается до тех пор; пока уклон поверхности не станет меньше угла естественного откоса. С этого момента начинается аккумуляция обломков, формируется конус осыпи.
Осыпные конусы могут сливаться друг с другом, к ним примешивается грубообломочный обвальный материал, и в конце концов у подножья склона образуется сплошной шлейф из крупных и мелких обломков породы. Формируются отложения, которые называют коллювиальными или просто коллювием (colluvio — скопление). Коллювий отличается плохой сортировкой материала. Одна из особенностей строения коллювиальных отложений заключается в том, что наиболее крупные обломки продвигаются дальше всего по аккумулятивной части осыпного склона и слагают подножие осыпей.
В возникновении обвалов и осыпей скрытое участие принимает вода. Дождевые и талые воды разрабатывают трещины, по которым происходит срыв обвально-осыпных масс, а также способствуют разрушению породы при замерзании в трещинах. Разрушение усиливается и за счет изменения объема породы при смене увлажнения и высыхания. Образуются обломки разной формы и величины, которые смещаются вниз по крутому склону преимущественно под действием силы тяжести.
При сильных ливнях стекающие по склону осыпей потоки воды подхватывают и приводят в движение не только мелкие частицы, но и дресву, мелкий щебень. Возникает грязекаменная масса — микросель. При незначительном изменении уклона микросель отлагает несомый материал в виде небольшого «языка» с расширенной и утолщенной частью в основании. Такие как бы застывшие в своем движении «потоки» нередко можно видеть в нижних частях и у подножья склонов сразу после ливня. В этом процессе примерно равное участие принимают силы гравитации и текущей воды.
Лавинные склоны. Скользящие и низвергающиеся вниз со склона снежные массы называют лавиной. Лавины — характерная особенность горных склонов, на которых образуется устойчивый снежный покров. В зависимости от характера движения снега по склонам Г. К. Тушинский выделяет три типа лавин: особы, лотковые и прыгающие лавины.
Осовами называют соскользнувший широким фронтом снег (вне строго фиксированных русел). При осовах в движение вовлекается слой снега толщиной 30—40 см. Геоморфологическая роль такого типа лавин незначительная. Лишь иногда у подножья склонов формируются небольшие гряды, состоящие из материала, захваченного особом со склона.
Лотковые лавины движутся по строго фиксированным руслам, заложенным часто временными водотоками. У лотковых лавин, как правило, хорошо выражены лавиносборные понижения, лотки, по которым движется снежная масса, и конусы выноса. Лавиносборны-мн понижениями часто служат отмершие кары или эрозионно-дену- дационные водосборные воронки.
Лавинные лотки — это крутостенные врезы с отшлифованными склонами, обычно лишенными растительности. В поперечном сечении они имеют нередко корытообразную форму. Продольный профиль лотков может быть ровным или с уклонами различной величины. Лавинные лотки хорошо опознаются на местности и дешифри-
руются на аэрофотоснимках по ряду косвенных признаков: па «лавинным прочесам», т. е. полосам, лишенным древесной растительности, изменению характера растительности и т. д.
Конусы выноса лавин состоят из снега, перемешанного с обломочным материалом. Обломочный материал, вытаивающий из лавинного снега и скапливающийся из года в год у основания лавинных лотков, образует своеобразную рыхлую толщу, которую часта называют лавинным «мусором». Лавинные конуса выноса состоят из несортированного обломочного материала и включения большого* количества органических, остатков —■ обломков деревьев, дерна и т. д. Поверхность лавинных конусов выноса из-за неравномерного содержания обломочного материала в снежной массе лавины неровная, бугристая.
При движении лавин по ровной или слегка наклонной поверхности дна долин иногда наблюдается выпахивание аллювия. В результате создаются гряды, похожие на снежные валы, образующиеся после прохода снегоочистительного клина. В зависимости от мощности аллювия высота гряд может колебаться от 10—15 см до-2—5 м. За счет выброса аллювия сошедшей со склона лавиной на противоположном берегу реки могут образоваться бугры высотой 2—3 м.
К прыгающим лавинам относят лотковые лавины, продольный-профиль которых характеризуется наличием отвесных участков. Морфологические признаки прыгающих лавин мало отличаются от лотковых лавин.
Рельефообразующая роль лавин зависит от их размеров и частоты схода. Размер и часто
Дата публикования: 2014-11-18; Прочитано: 2574 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!