Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Заказать написание работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

РЕЛЬЕФ И ГЕОЛОГИЧЕСКИЕ СТРУКТУРЫ 3 страница



53.


1800 м. Лавы заполнили все отрицательные формы предшествую­щего рельефа, обусловив почти идеальное его выравнивание. В на­стоящее время высота плато от 400 до 1800 м. В его поверхность глубоко врезаются долины многочисленных рек. На самых молодых лавовых покровах здесь сохранились глыбовый микрорельеф, шла­ковые конусы, лавовые пещеры и желоба.

При подводных вулканических извержениях поверхность излив­шихся магматических потоков быстро остывает. Значительное гид­ростатическое давление водной толщи препятствует взрывным про­цессам. В результате формируется своеобразный микрорельеф ша­рообразных, или подушечных, лав.

Излияния лавы не только образуют специфические формы рель­ефа, но могут существенным образом влиять на уже существующий рельеф. Так, лавовые потоки могут повлиять на речную сеть, выз­вать ее перестройку. Перегораживая речные долины, они способст­вуют катастрофическим наводнениям или иссушению местности; потере ею водотоков. Проникая к берегу моря и застывая здесь, ла­вовые потоки изменяют очертания береговой линии, образуют осо­бый морфологический тип морских побережий.

Излияния лав и выброс пирокластического материала неизбеж­но вызывает образование дефицита масс в недрах Земли. Послед­нее обусловливает быстрые опускания участков земной поверхно­сти. В отдельных случаях началу извержения предшествует замет­ное поднятие местности. Так, например, перед извержением вулкана Усу «а острове Хоккайдо образовался крупный разлом, вдоль ко­торого участок поверхности площадью около 3 км2 за три месяца поднялся на 155 м, а после извержения произошло его опускание

на 95 м.

Говоря о рельефообразующей роли эффузивного магматизма, следует отметить, что при вулканических извержениях могут про­исходить внезапные и очень быстро протекающие изменения рель­ефа и общего состояния окружающей местности. Особенно велики такие изменения при извержениях эксплозивного типа. Например, при извержении вулкана Кракатау в Зондском проливе в 1883 г., носившем характер серии взрывов, произошло разрушение большей части острова, и на этом месте образовались глубины моря до 270 м. Взрыв вулкана вызвал образование гигантской волны ■—цу­нами, которая обрушилась на берега Явы (и Суматры. Она нанесла огромный вред прибрежным районам островов, приведя к гибели десятков тысяч жителей. Другой пример такого рода — извержение вулкана Катмай на Аляске в 1912 г. До извержения вулкан Кат-май имел вид правильного конуса высотой 2286 м. Во время извер­жения вся верхняя часть конуса была разрушена взрывами и обра­зовалась кальдера до 4 км в поперечнике и до 1100 м глубиной.

Вулканический рельеф подвергается в дальнейшем воздействию экзогенных процессов, приводящему к формированию своеобразных вулканических ландшафтов.

Как известно, кратеры и вершинные части многих крупных вул­канов являются центрами горного оледенения. Поскольку образую-


щиеся здесь ледниковые формы рельефа не имеют каких-либо прин­ципиальных особенностей, они специально не рассматриваются, флювиальные формы вулканических районов имеют свою специ­фику. Талые воды, грязевые потоки, образующиеся нередко при вулканических извержениях, атмосферные воды существенно воз­действуют на склоны вулканов, в особенности на те, в строении ко­торых главная роль принадлежит пирокластическому материалу. При этом образуется радиальная система овражной сети — так на­зываемые барранкосы. Это глубокие эрозионные борозды, расходя­щиеся как бы по радиусам от вершины вулкана (см- рис. 17).

Барранкосы следует отличать от борозд, пропаханных в рыхлом покрове пепла и лапиллей крупными глыбами, выброшенными при извержении. Такие образования нередко называют шаррами. Шар-ры, как исходные линейные понижения, могут быть преобразованы затем в эрозионные борозды. Существует мнение, что значительная часть барранкосов заложена по'бывшим шаррам.

Общий рисунок речной сети в вулканических районах также за­частую имеет радиальный характер. Другими отличительными осо­бенностями речных долин в вулканических районах являются водо­пады и пороги, образующиеся в результате пересечения реками за­стывших лавовых потоков или траппов, а также плотинные озера или озеровидные расширения долин на месте спущенных озер, воз­никающих при перегораживании реки лавовым потоком. В местах скопления пепла, а также на лавовых покровах вследствие высокой водопроницаемости пород на обширных пространствах могут вооб­ще отсутствовать какие-либо водотоки. Такие участки имеют облик каменистых пустынь.

Для многих вулканических областей характерны выходы напор­ных горячих вод, называемых гейзерами. Горячие глубинные воды содержат много растворенных веществ, выпадающих в осадок при охлаждении вод. Поэтому места выходов горячих источников бы­вают окружены натечными, зачастую причудливой формы терраса­ми. Широко известны гейзеры и сопровождающие их террасы в Иелоустонском парке в США, на Камчатке (Долина гейзеров), в Новой Зеландии, в Исландии.

В вулканических областях встречаются также специфические формы выветривания и денудационной препарировки. Так, напри­мер, мощные базальтовые покровы или потоки базальтовой, реже андезитовой, лавы при остывании и под воздействием атмосферных агентов разбиваются трещинами на столбчатые отдельности. Не-Редко отдельности представляют собой многогранные столбы, ко­торые очень эффекте выглядят в обнажениях. Выходы трещин на поверхность лавового покрова образуют характерный полигональ­ный микрорельеф. Такие пространства лавовых выходов, разбитые системой полигонов — шестиугольников или пятиугольников, полу­чили название «мостовых гигантов».

При продолжительной денудации вулканического рельефа в пер-вУю очередь разрушаются накопления пирокластического материа­ла.Более стойкие лавовые и другие магматические образования

55-



подвергаются препарировке экзогенными агентами. Характерными ■формами препарировки являются упоминавшиеся выше дайки, а также некий (отпрепарированные лавовые пробки, застывшие в жерле вулкана).

Глубокое эрозионное расчленение и склоновая денудация мо­гут привести к разделению лавового плато на отдельные платооб-разные возвышенности, иной раз далеко отстоящие друг от друга. Такие останцовые формы получили название мез (в единственном числе — меза).


щим окраины Тихого океана, прилегающим к Азии и Австралии. Вблизи островов известно и много подводных вулканов.

Сравнительно небольшое число вулканов приурочено к зонам разломов, рассекающих такие древние материковые платформы,. как Африканская.

В океане многие вулканы образуют острова, расположенные вдалеке от материков. Из океанических вулканических островов, можно назвать Гавайи, Азорские острова, Реюньон, Тристан-да-Кунья и многие другие. Особую вулканическую область представ­ляет Исландия. На первый взгляд, распределение таких вулканов кажется незакономерным, спорадическим. Однако в распростране­нии и этих вулканов имеется достаточно четкая закономерность. Она станет ясной после того, как будут рассмотрены основные чер­ты морфологии планетарных форм рельефа.

Исследователи рельефа и геологического строения дна океанов единодушно отмечают, что часто встречающиеся здесь плосковер­шинные подводные горы гайоты представляют собой подводные вул­каны, вершины которых при более низком относительном положении, уровня моря были срезаны абразией. Как показывают данные буре­ния и геофизических работ, коренные основания океанических ко­ралловых островов также имеют вулканическое происхождение. Широко распространенный холмистый рельеф дна океана в основ­ном, как полагают, создан вулканическими извержениями. Все это свидетельствует об особенно широком развитии вулканических процессов именно в пределах Мирового океана.



В результате длительной денудации в вулканических районах могут возникать ,и инверсионные формы рельефа. Так, лавовые по­токи, занимавшие первоначально понижения рельефа (долины), могут образовать продолговатую столовую возвышенность, подни­мающуюся над окружающей местностью благодаря защитной роли бронирующего слоя лавы (рис. 18).

Вулканический рельеф широко распространен «а поверхности Земли. До недавнего времени, говоря о географии вулканов, обыч­но имели в виду вулканы суши. Исследования последних десятиле­тий показали, что в океанах вулканических форм не меньше, а, по-видимому, даже значительно больше, чем на материках. Только в Тихом океане насчитывается не менее 3 тыс. подводных вулканов.

Подавляющая часть новейших и современных вулканов суши приурочена к совершенно определенным зонам. Одна из таких зон имеет в основном меридиональное направление и протягивается вдоль западных побережий обеих Америк. Другая хорошо изучен­ная зона вулканических районов имеет широтное простирание. Она охватывает районы, прилегающие к Средиземному морю и тянется далее на восток, где пересекается в районе Индонезии с третьей вул­канической зоной, соответствующей западной окраине Тихого океа­на. В пределах третьей зоны большинство действующих вулканов приурочено к островным дугам — гирляндам островов, обрамляю-


ГЛАВА 7. ЗЕМЛЕТРЯСЕНИЯ КАК ФАКТОР ЭНДОГЕННОГО РЕЛЬЕФООБРАЗОВАНИЯ

Подобно другим эндогенным факторам, землетрясения имеют за­метное рельефообразующее значение. Геоморфологическая роль зёмлетряеений'выражается в образовании трещин, в смещении бло­ков земной коры по трещинам в вертикальном и горизонтальном направлениях, иногда в складчатых деформациях.

Известно, например, что при Ашхабадском землетрясении в 1948 г. на поверхности земли в результате сильных подземных толчков возникло множество трещин разной величины. Некоторые из них тянулись на многие сотни метров, пересекая холмы и доли­ны, вне видимой связи с существующим рельефом. По ним произо­шло перемещение масс в вертикальном направлении с амплитудой иногда до 1 м. Во время Беловодского землетрясения в 1885 г. (Кир­гизия) в результате вертикального смещения по трещинам блоков земной коры образовались уступы высотой до 2,5 м. При землетрясе­нии в Португалии (1775) набережная г. Лиссабона мгновенно уш­ла под воду и на ее месте глубина залива достигла 200 м. Во время землетрясения в Японии (1923) одна часть залива Сагами (к югу



от г. Токио) площадью около 150 км2 быстро поднялась на 200— 250 м, а другая опустилась на 150—200 м.

Нередко в результате землетрясений образуются структуры типа грабенов, соответственно выраженных в рельефе в виде отрицатель­ных форм. Так, во время Гоби-Алтайского землетрясения (1957) в эпицентральной зоне образовался грабен шириной 800 м, длиной 2,7 !км, с амплитудой перемещения по трещинам до 4 м. Возникший при этом землетрясении уступ протянулся более чем на 500 км, а ширина зияющих трещин достигла 20, а местами и 60 м. В резуль­тате землетрясения в Прибайкалье в 1862 г. значительный участок Кударинской степи (в северо-восточной части дельты Селенги) пло­щадью около 260 км2 опустился, и на этом месте образовался за­лив Провал глубиной до 8 м.

Иногда при землетрясениях могут возникать специфические по­ложительные формы рельефа. Так, во время землетрясения на се­вере Мексики (1887) между двумя сбросами образовались холмики высотой до 7 м, а во время Ассамского землетрясения в Индии в море выдвинулся ряд островов, один из которых имел длину 150 м при ширине 25 м. В некоторых случаях по трещинам, образовав­шимся при землетрясениях, поднималась вода, выносившая на по­верхность песок и глину. В результате возникали небольшие насып­ные конусы высотой 1 —1,5 м, напоминающие миниатюрные грязе­вые вулканы. Иногда при землетрясениях образуются деформации типа складчатых нарушений. Так, во время землетрясения в Японии в 1891 г. на земной поверхности образовались волны высотой до 30 см и длиной от 3 до 10 м.

В связи с тем, что многие формы рельефа, возникающие при зем­летрясениях, имеют сравнительно небольшие размеры, они доволь­но быстро разрушаются под воздействием экзогенных процессов.

Не менее, а может быть и более важную рельефообразующую роль играют некоторые процессы, вызываемые землетрясениями и сопутствующие им. При землетрясениях в результате сильных под­земных толчков на крутых склонах гор, берегах рек и морей воз­никают и активизируются обвалы, осыпи, осовы, а в сильно увлаж­ненных породах — оползни и оплывины. Так, во время Хаитского землетрясения в Таджикистане (1949) произошли крупные обвалы и. осыпи, а селение Хаит оказалось почти полностью погребенным под оплывиной, мощность которой достигала нескольких десятков метров. Грандиозный обвал произошел на Памире в результате землетрясения 1911 г. Обвалившаяся масса перегородила долину р. Мургаб, образовав плотину шириной более 5 км и высотой до 600 м. Предполагают, что таково же происхождение огромной пло­тины в верховьях долины р. Баксан на Кавказе. Часто при земле­трясениях на крутых склонах гор приходит в движение весь нако­пившийся на них рыхлый материал, формирующий у подножья мощные осыпные шлейфы.

В результате Алма-Атинского землетрясения в 1911 г. на север­ном склоне Заилийского Алатау оползневые и оплывные тела за­няли площадь более 400 км2-


Рыхлый материал, накопившийся у подножья склонов гор, в до­линах рек и временных водотоков в результате описанных выше процессов, может служить источником для возникновения селей. Устремляясь вниз по долинам, сели производят огромную разруши­тельную работу, а при выходе из гор формируют обширные по пло­щади конусы выноса.

Оползни, обвалы, перемещения блоков земной коры по разры­вам вызывают изменения в гидросети: образуются озера, появля­ются новые, исчезают старые источники. Во время Андижанского землетрясения (1902) в долине р. Карадарья образовались грязе­вые вулканы.

Определенную рельефообразующую роль играют и те землетря­сения, очаги которых располагаются в море, или, как их иногда на­зывают, — моретрясения. Под их воздействием происходит пере­мещение огромных масс рыхлых, насыщенных водой донных отло­жений даже на пологих склонах морского дна.

Моретрясения в ряде случаев вызывают образование гигантских морских волн — цунами, которые, обрушиваясь на берег, не только причиняют огромные разрушения населенным пунктам и сооруже­ниям, созданным человеком, но и оказывают местами существенное влияние на морфологию морских побережий.

Подобно вулканам, землетрясения на поверхности земного шара распределены неравномерно: в одних районах они происходят часто и достигают большой силы, в других они редки и слабы. Высокой сейсмичностью характеризуются средиземноморский пояс складча­тых сооружений от Гибралтара до Малайского архипелага и пери­ферические части Тихого океана. Значительной сейсмичностью от­личаются срединно-океанические хребты, область великих озер Вос­точной Африки и некоторые другие территории.

Если сравнить карты географии вулканов и землетрясений, то легко убедиться, что землетрясения приурочены к тем же областям, в которых сосредоточена большая часть действующих и потухших вулканов. Разумеется, это не простое географическое совпадение, а результат единства проявлений внутренних сил Земли. Это един­ство выявляется еще более четко при сопоставлении карты распро­странения вулканов и землетрясений с картой новейших тектони­ческих движений. Сопоставление дает основание прийти к за­ключению, что и вулканы, и землетрясения приурочены к областям наиболее интенсивных новейших тектонических движений.

ГЛАВА 8. СТРОЕНИЕ ЗЕМНОЙ КОРЫ И ПЛАНЕТАРНЫЕ ФОРМЫ РЕЛЬЕФА

Выше были рассмотрены некоторые формы мега-, макро- и мезо­рельефа образование которых обусловлено деятельностью эндоген­ных процессов (см. гл. 5, 6, 7). Самые крупные формы рельефа — планетарные —также обязаны своим происхождением внутренним


           
 
 
   
 
   



силам Земли, лежащим в основе образования различных типов зем­ной коры.

Данные геофизики, и в частности глубинного сейсмического зондирования, свидетельствуют о том, что земная кора под матери­ками и океаническими впадинами имеет неодинаковое строение, поэтому различают материковый и океанический типы земной коры (рис. 19).

Кора материкового типа характеризуется большой мощностью — в среднем 35 км, местами — до 75 км. Она состоит из трех «слоев».

Сверху залегает осадочный слой, образованный из осадочных пород различного состава, возраста, генезиса и степени дислоцированно-сти. Мощность его изменяется от нуля до 15 км. Ниже залегает гра­нитный слой, состоящий главным образом из кислых пород, близких по составу к граниту. Наибольшая мощность гранитного слоя отме­чается под молодыми высокими горами, где она достигает 50 км. В пределах равнинных участков материков мощность гранитного слоя падает до 10 км.

Под гранитным слоем залегает базальтовый слой, получивший свое название также условно: сейсмические волны проходят через него с такими же скоростями, с которыми в экспериментальных ус­ловиях они проходят через базальты и близкие к ним породы. Ис­тинный состав базальтового слоя в пределах материков до сих пор остается неизвестным. Мощность его в пределах горных стран достигает 15 км, а в пределах выравненных участков материков — 25—30 км.


Кора океанического типа резко отличается от материковой. На большей части площади дна океана мощность ее колеблется от 5 до 10 км. Своеобразно и ее строение: под осадочным слоем мощ­ностью от нескольких километров до нескольких сотен метров залегает промежуточный слой переменной мощности, нередко назы­ваемый просто «вторым слоем». Сейсмические волны распростра­няются в «ем с большими скоростями, чем в осадочном, но мень­шими, чем в гранитном слое. Предполагают, что промежуточный слой состоит из уплотненных осадочных пород, пронизанных вул­каническими образованиями. В последнее время этот слой полу­чил название «океанического фундамента». Под ним залегает ба­зальтовый слой мощностью 4—7 км. Таким образом, важнейшей специфической особенностью океанической коры является малая мощность и отсутствие гранитного слоя.

Особое строение земная кора имеет в областях перехода от ма­териков к океанам — в современных геосинклинальных поясах, где она отличается пестротой и сложностью строения. На примере за­падной окраины Тихого океана можно видеть, что окраинные гео­синклинальные области обычно состоят из трех основных элемен­тов — котловин глубоководных морей, островных дуг и глубоко­водных желобов. Пространства, соответствующие глубоководным впадинам морей (Карибского, Японского и др.), имеют кору, по своему строению напоминающую океаническую. Здесь отсутствует гранитный слой, однако мощность коры значительно больше за счет увеличения мощности осадочного слоя. Крупные массивы суши, граничащие с такими морями (например, Японские острова), сло­жены корой, близкой по строению к материковой. Характерной осо­бенностью переходных областей являются также сложное взаимо­сочетание и резкие переходы одного типа коры в другой, интенсив­ный вулканизм и высокая сейсмичность. Такой тип строения земной коры можно назвать геосинклинальным.

Своеобразными чертами характеризуется земная кора под сре-динно-океаническими хребтами. Она выделяется в особый, так на­зываемый рифтогенный тип земной коры. Детали строения коры этого типа еще не совсем ясны. Ее важнейшая особенность — зале­гание под осадочным или промежуточным слоями пород, в которых упругие волны распространяются со скоростями, равными 7,3— 7,8 км/с, т. е. намного большими, чем в базальтовом слое, но мень­шими, чем в мантии. Возможно, что здесь происходит смешение ве­щества коры и мантии. Это предположение в 1974 г. получило до­полнительное подтверждение в результатах глубоководного буре­ния, проведенного южнее Азорских островов на Срединно-Атланти-

ческом хребте.

Каждому из перечисленных выше типов земной коры соответст­вуют наиболее крупные, планетарные формы рельефа (рис. 19, 20). Материковому типу земной коры соответствуют материки. Они образуют основные массивы суши. На значительной площади ма­терики могут быть затоплены водами океанов. Затопленные части . материков получили название подводной окраины материков. В гео-


физическом и геоморфологическом смысле границами материков следует считать самую нижнюю границу подводной окраины ма­териков, где выклинивается гранитный слой и кора материкового типа сменяется океанической.

Океаническому типу земной коры соответствует ложе оке­ана.

Сложно построенная кора геосинклинального типа находит от­ражение в рельефе геосинклинальных поясов или зон перехода от материков к океанам. Ниже для краткости мы будем именовать их переходными зонами.

Рифтогенный тип земной коры соответствует в рельефе плане­тарной системе орединно-океанических хребтов.

Каждая планетарная форма рельефа характеризуется своеоб­разием присущих ей форм мега- и макрорельефа, в подавляющем большинстве случаев также обусловленным различиями в строении или структуре земной коры.

Переходя к описанию мегарельефа названных крупнейших пла­нетарных форм рельефа Земли, следует подчеркнуть, что при при­веденном выше выделении планетарных морфоструктур береговая линия теряет свое значение как важнейшая физико-географическая граница, отделяющая сушу от морского дна. Однако роль ее безу-62


словно велика, так как условия рельефообразования на морском дне и на суше существенно различны.

Следует также отметить, что на материках, являющихся весь­ма сложными образованиями, наряду с древними и молодыми плат­формами широко распространены совсем молодые морфоструктуры, обязанные своим происхождением альпийским горообразова-тельныхм движениям и еще не утратившие полностью черты, свойст­венные геосинклинальным областям. Однако эти морфоструктуры характеризуются уже сформировавшейся 'материковой земной корой.

В связи с указанными обстоятельствами дальнейшее описание форм мегарельефа суши дается по возможности отдельно от мега­рельефа морского дна. Соответственно, обзор мегарельефа матери­ков включает в себя общую характеристику равнин и гор суши, в том числе и молодые эпигеосинклинальные горные сооружения. При обзоре переходных зон основное внимание уделяется морским (океаническим) элементам этой мегаморфоструктуры.

ГЛАВА 9. МЕГАРЕЛЬЕФ МАТЕРИКОВ

Площадь материков вместе с подводной окраиной, а также альпий­скими эпигеосинклинальными континентальными образованиями и участками с корой материкового типа в пределах переходных зон составляет примерно 230 млн. квадратных километров.

По структуре материки — сложные гетерогенные тела, сформи­ровавшиеся в течение длительной эволюции литосферы и земной коры. Сложность эволюции и последовательность различных ста­дий образования материков находят отражение в их тектоническом и геологическом строении. По характеру тектонической активности и направленности геологического развития в пределах материков выделяются более устойчивые (более стабильные) площади, полу­чившие названия платформ, и площади, обладающие большей тек­тонической подвижностью (мобильностью), — геосинклинальные области. Неоднородность строения и развития платформ и геосин­клинальных областей определяет различие рельефа в их пределах и позволяет выделить в пределах материков два основных типа мор­фоструктур — платформенные и геосинклинальные. При более де­тальном рассмотрении видно, что как платформенные, так и гео­синклинальные области оказываются далеко неоднородными по геологическому строению, развитию и возрасту. Эта неоднородность находит отражение в рельефе материков, в различных типах морфо­структур разного порядка.

МЕГАРЕЛЬЕФ ПЛАТФОРМ СУШИ

Как известно из курса геологии, платформы—■ это основные эле­менты структуры материков, которые в отличие от геосинклиналей


характеризуются более спокойным тектоническим режимом, мень­шей интенсивностью проявлений магматизма и сейсмичности. Диф-ференцированность, скорости и амплитуды вертикальных колеба­тельных движений в пределах платформ также невелики. Поэтому-более 50% площади материковых платформ занято низменными равнинами, невысокими плато, плоскогорьями или шельфовыми морями типа Балтийского, Желтого и др.

Однако, как было сказано выше, материковые платформы не­одинаковы по возрасту. Значительные их части, главным образом по периферии, стали платформами геологически сравнительно не­давно — в мезозое. Раньше эти участки платформ были областями интенсивной деятельности эндогенных процессов, областями актив­ного горообразования. Свидетелями этого являются горные соору­жения, окаймляющие древние (докембрийские) материковые плат­формы: горы Северо-Востока СССР (Верхоянский хребет, хребет Черского и др.), обрамляющие с востока Сибирскую платформу, Скалистые горы, обрамляющие с запада Североамериканскую платформу, и др. На поверхности материковых платформ местами сохранились и так называемые остаточные горы более древних складчатых сооружений, сильно денудированные, но еще достаточ­но заметные в рельефе: Гвианское и Бразильское нагорья в преде­лах Южноамериканской платформы, ряд нагорий и горных масси­вов в пределах Африкано-Аравийской платформы и др. Наконец, известны и такие участки платформ, которые, несмотря на свою древность, в недавнем геологическом прошлом испытали коренную перестройку рельефа, стали тектонически активными и на их месте возникли горы. В ряде случаев такие районы характеризуются вы­сокой сейсмичностью и проявлением современного вулканизма. Это так называемые горы возрожденных подвижных поясов, о которых речь пойдет несколько позднее.

Наибольшую площадь среди материковых платформ занимают древние платформы, возникшие на месте докембрийских геосинкли­нальных областей. К числу таких платформ относятся: Южноаме­риканская, Африкано-Аравийская, Индостанская, Австралийская, Североамериканская, Восточноевропейская, Сибирская, Североки­тайская, Южнокитайская. Из сопоставления тектонической и физи-ческой карт мира видно, что этим платформам в крупном плане соот-ветствуют относительно ровные пониженные или невысоко припод­нятые пространства материков, хотя характер рельефа этих прост­ранств и -не остается одинаковым от места к месту-

На платформах южного полушария в течение длительного вре­мени поднятия преобладали над погружениями, поэтому они харак­теризуются более высокими средними высотами, в их пределах ча­ще встречаются довольно высокие горные массивы. Значительную часть площади платформ занимают щиты, кристаллические породы хоторых и структуры кристаллического фундамента оказывают су­щественное влияние на рельеф, формирующийся под воздействием внешних (экзогенных) сил. Эти платформы характеризуются не­сколько повышенной сейсмичностью. В их пределах встречаются


трубки взрыва. По ряду признаков к платформам южного полуша­рия близки Сибирская и Индостанская платформы.

Важнейшими структурными элементами древних платформ, кро­ме отмеченных выше щитов, являются антеклизы и синеклизы, обычно выраженные в рельефе в виде обширных возвышенностей и впадин. Следует отметить, что антеклизы и синеклизы чаще всего связаны с подвижками блоков фундамента по разломам. Отраже­ние этих структур в рельефе оказывает существенное влияние на распределение поверхностного стока и формирование речных сис­тем. Последние тяготеют к синеклизам и другим более мелким от­рицательным структурам, а основные водоразделы располагаются в пределах антеклиз. Так, в пределах Восточноевропейской плат­формы системы Среднего Днепра, Верхней Волги, Печоры доволь­но четко укладываются в контуры соответственно Украинской, Мос­ковской и Печорской синеклиз.

Испытывая медленные, но устойчивые во времени восходящие движения, щиты и антеклизы создают предпосылки для формиро­вания на них преимущественно денудационных равнин. К сияекли-зам, особенно к тем из них, которые испытали длительное погруже­ние или продолжают погружаться и в настоящее время, приурочены аккумулятивные равнины. Горы платформ—-области преимущест­венной денудации.

Аккумулятивные равнины обычно сложены с поверхности мощ­ными толщами новейших, неоген-четвертичных слабо консолидиро­ванных отложений, хотя часто аккумулятивный процесс здесь имеет унаследованный характер. Например, аккумулятивная равнина Амазонки, приуроченная к одноименной синеклизе Южноамерикан­ской платформы, начала формироваться еще в протерозое. В осно­вании аккумулятивной равнины Прикаспийской низменности лежат пермские отложения палеозоя и т. д.

Денудация в пределах аккумулятивных равнин сильно ослабле­на или имеет локальное 'развитие. Продукты выветривания не успе­вают удаляться с места их образования и накапливаются на по­верхности. Часто к ним присоединяются рыхлые наносы (речные, ледниковые, эоловые), принесенные извне. В отличие от денудаци­онных равнин и особенно гор свойства коренных горных пород, сла­гающих цоколи аккумулятивных равнин, и условия их залегания не играют большой роли в формировании рельефа. Морфологический облик аккумулятивных равнин определяется поверхностными рых­лыми образованиями как возникшими на месте, так и принесенны­ми со стороны.





Дата публикования: 2014-11-18; Прочитано: 1588 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2022 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.024 с)...