Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Тема 5. Производная и дифференциал



[2] гл. IX, § 1—5; [3] № 907, 908, 910;

[2] гл. X; [3] № 850, 857, 875, 888, 945, 956

[2] гл. XII; [3] № 1067, 1075, 1077.

Разберите решение задачи 8 данного пособия.

Задача 8. Найдите производные функции:

а)у=In (2+sin 3х); б) у=(3 +1) ;

в) cos (ху )-3у

Решение: а) Последовательно применяя правилодиф ­ ференцирования сложной функции, правила и формулы диф­ференцирования, имеем:

у' = '= '= '+(sin3х)' = '= ;

б)у'= '=4(3 +1) *(3 +1)'=4(3 +1) *3 *In3*(arctg )'=

=4(3 +1) * 3 *In3* * '= *3 *(3 +1) ;

в) В данном случае функциональная зависимость задана в неявном виде. Для нахождения производнойу' нужно продифференцировать по переменнойх обе части уравнения, считая при этому функцией отх, а затем полученное урав­нение разрешить относительноу':

-sin (ху )*(ху )'-6уу'+4=0,

-sin (ху )*(у +2хуу')-6уу'+4=0,

sin (ху )-2хуу' sin (ху )-6уу'+4=0.

Из последнего уравнения находиму':

2уу' х sin (ху )+3 =4- у sin (ху ),

у'= .

Вопросы для самопроверки

  1. Что называется производной функции?
  2. Каков геометрический, физический смысл производ­ной?
  3. Как взаимосвязаны непрерывность функции и ее дифференцируемость в точке?
  4. Напишите основные правила дифференцирования функций.
  5. Напишите формулы дифференцирования основных эле­ментарных функций.
  6. Сформулируйте правило дифференцирования сложной функции.
  7. Что называется дифференциалом функции?
  8. Каков геометрический смысл дифференциала функ­ции.
  9. Перечислите основные свойства дифференциала функ­ции.
  10. Напишите формулу, позволяющую находить прибли­женное значение функции при помощи ее дифференциала.
  11. Как найти производную второго, третьего, n-го поряд­ков?
  12. Как найти дифференциал второго порядка от данной функции?




Дата публикования: 2014-11-19; Прочитано: 287 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...