![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x), что выполняется равенство для любого х из заданного промежутка.
Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо равенство . Таким образом, функция f(x) имеет множество первообразных F(x)+C, для произвольной константы С, причем эти первообразные отличаются друг от друга на произвольную постоянную величину.
Пример. Найти первообразную функции , значение которой равно единице при х = 1.
Решение.
Мы знаем из дифференциального исчисления, что (достаточно заглянуть в таблицу производных основных элементарных функций). Таким образом,
. По второму свойству
. То есть, имеем множество первообразных
. При х = 1 получим значение
. По условию, это значение должно быть равно единице, следовательно, С = 1. Искомая первообразная примет вид
.
Пример Найти неопределенный интеграл и результат проверить дифференцированием.
Решение.
По формуле синуса двойного угла из тригонометрии , поэтому
Из таблицы производных для тригонометрических функций имеем
То есть,
По третьему свойству неопределенного интеграла можем записать
Обращаясь ко второму свойству, получим .
Следовательно,
Дата публикования: 2014-11-04; Прочитано: 271 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!