Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Любая электротехническая установка состоит из элементов, так или иначе связанных между собой. Соединение проводящих звеньев электрической цепи, обеспечивающее протекание электрического тока при наличии источника э. д. с, осуществляется с помощью электрических контактов.
Слово контакт от латинского слова contactus — прикосновение. Под электрическим контактом весьма часто понимается совокупность двух или нескольких проводников электрического тока, соединенных между собой и сжатых с определенной силой.
ГОСТ 2774—44 определяет электрический контакт, как «место перехода тока из одной токоведущей части в другую».
По своему назначению электрические контакты можно разделить на две группы.
1. Соединительные контакты, которые служат только для соединения различных звеньев электрической цепи, т. е. для обеспечения протекания тока от одного звена к другому. Соединительные контакты всегда замкнуты.
2. Коммутирующие контакты, предназначенные для включения, отключения и переключения электрических цепей.
Соединительные контакты, применяемые в токопроводах электрических аппаратов, весьма разнообразны. Некоторые типичные конструкции их изображены на рис. 3.1.
Основным требованием, предъявляемым к соединительным контактам, является надежность в длительной эксплуатации: соединительные контакты должны длительно, в пределах срока службы всей установки в целом и без повреждений допускать протекание токов нормального режима и кратковременных токов аварийных режимов работы.
Надежность в длительной эксплуатации соединительных (не размыкаемых) контактов будет обеспечена, если сопротивление контакта электрическому току будет достаточно стабильным. Для этого соединительный контакт должен обладать способностью противостоять как воздействию окружающей среды, так и воздействию механических усилий от температурных деформаций и от электродинамических усилий, возникающих при протекании больших токов короткого замыкания.
Контактирующие проводники в соединительных контактах могут быть либо неподвижны друг относительно друга (хотя контакт в целом может и перемещаться с определенной скоростью), либо перемещаться относительно друг друга без размыкания цепи, как, например это имеет место роликовом или в щеточном контакте.
Коммутирующие контакты могут находиться в замкнутом (соответствующая цепь включена) или разомкнутом (соответствующая цепь отключена) состоянии.
Существует большое разнообразие коммутирующих контактов. Например, могут быть контакты: рубящие, торцовые, щеточные, пальцевые, розеточные и пр. По своему назначению коммутирующие контакты в сильноточных аппаратах можно разделить на главные и дугогасительные. Обычно главные контакты шунтируются дугогасительными, в процессе размыкания цепи главные контакты выходят из соприкосновения ранее, чем дугогасительные, а поэтому образование дуги происходит только на дугогасительных. Таким образом главные контакты защищены от воздействия дуги и служат для надежного пропускания рабочих токов и токов короткого
замыкания в замкнутом состоянии.
Рис.7.1.Некоторые типы коммутирующих контактов:
а — контакты контактора; б —релейные контакты на плоских пружинах
Часто функции контактов совмещаются: они выполняют роль и токоведущих, и дугогасительных контактов.
Некоторые типы коммутационных контактов представлены на рис.7.1.
Как ни тщательно обработаны поверхности соприкосновения контактов, электрический ток проходит между ними только в отдельных точках, в которых эти поверхности касаются, так как получить абсолютно гладкую поверхность практически невозможно. Примерная картина соприкосновения контактов показана на рис.. Благодаря нажатию Р одного контакта на другой вершины выступов деформируются и образуются площадки действительного касания контактов. Рассмотрим процесс перехода тока из одного контакта в другой при касании двух цилиндрических контактов по торцам.
Рис.7.2.Соприкосновение поверхностей контактов
В результате стягивания линий тока к площадке касания их длина увеличивается, а сечение проводника, через которое фактически проходит ток, уменьшается, что вызывает увеличение сопротивления. Сопротивление в области площади касания, обусловленное явлениями стягивания линий тока, называется переходным сопротивлением стягивания контакта.
Таким образом, переходное сопротивление, обусловленное стягиванием линий тока, пропорционально удельному сопротивлению материала контакта, корню квадратному из временного сопротивления на смятие этого материала о и обратно пропорционально корню квадратному из силы контактного нажатия. Одноточечный контакт применяется в основном только три малых токах (до 20 А). При больших токах (100 А и более) применяется многоточечный контакт. В многоточечном контакте ток проходит через несколько контактных переходов, соединенных параллельно. Поэтому его переходное сопротивление при неизменном нажатии меньше, чем уодноточечного контакта. Однако нажатие в каждой контактной площадке уменьшается. Количество контактных переходов увеличивается с ростом нажатия по весьма сложному закону.
Сопротивление зависит и от обработки поверхности. При шлифовке поверхность выступов более пологая с большой площадью. Смятие таких выступов возможно только при больших силах нажатия. Поэтому сопротивление шлифованных контактов выше, чем контактов с более грубой обработкой.
Переходное сопротивление контактов обусловлено не только явлением стягивания линий тока. Контактирующие поверхности покрыты адсорбированными молекулами газа, в котором располагались контакты до их замыкания. Очень часто молекулы газа вступают в химическую реакцию с материалом контактов, в результате чего на их поверхности могут возникнуть пленки с высоким удельным сопротивлением.
МАТЕРИАЛЫ КОНТАКТОВ
К материалам контактов современных электрических аппаратов предъявляются следующие требования:
1) высокие электрическая проводимость и теплопроводность;
2) высокая коррозионная стойкость в воздушной и других средах;
3) стойкость против образования пленок с высоким электрическим сопротивлением;
4) малая твердость для уменьшения необходимой силы нажатия;
5) высокая твердость для уменьшения механического износа при частых включениях и отключениях;
6) малая эрозия;
7) высокая дутостойкость (температура плавления);
8) высокие значения тока и напряжения, необходимые для дугообразования;
9) простота обработки, низкая стоимость.
Свойства некоторых контактных материалов рассмотрены ниже.
Медь. Положительные свойства: высокие удельная электрическая проводимость и теплопроводность, достаточная твердость, что позволяет применять при частых включениях и отключениях, простота технологии, низкая стоимость.
Недостатки: достаточно низкая температура плавления, при работе на воздухе покрывается слоем прочных оксидов, имеющих высокое сопротивление, требует довольно больших сил нажатия. Для защиты меди от окисления поверхность контактов покрывается электролитическим способом слоем серебра толщиной 20—30 мкм. В контактах на большие токи иногда ставятся серебряные пластинки (в аппаратах, включаемых относительно редко). Применяется как материал для плоских и круглых шин, контактов аппаратов высокого напряжения, контакторов, автоматов и др. Вследствие низкой дугостойкости нежелательно применение в аппаратах, отключающих мощную дугу и имеющих большое число включений в час.
В контактах, не имеющих взаимного скольжения, из-за пленки оксидов применение меди не рекомендуется.
Серебро. Положительные свойства: высокие электрическая проводимость и теплопроводность, пленка оксида серебра имеет малую механическую прочность и быстро разрушается при нагреве контактной точки. Контакт серебра устойчив благодаря малому напряжению на смятие Сем. Для работы достаточны малые нажатия (применяется при нажатиях 0,05 Н и выше). Устойчивость контакта, малое переходное сопротивление являются характерными свойствами серебра.
Недостатки: малая дугостойкость и недостаточная твердость препятствуют использованию его при наличии мощной дуги и частых включениях и отключениях.
Применяется в реле и контакторах при токах до 20 А. При больших токах вплоть до 10 кА серебро используется как материал для главных контактов, работающих без дуги.
Алюминий. Положительные свойства: достаточно высокие электрическая проводимость и теплопроводность. Благодаря малой плотности токоведущая часть круглого сечения из алюминия на такой же ток, как и медный проводник, имеет почти на 48 % меньшую массу. Это позволяет уменьшить массу аппарата.
Недостатки: 1) образование на воздухе и в активных средах пленок с высокой механической прочностью и высоким сопротивлением;
2) низкая дугостойкость (температура плавления значительно меньше, чем у меди и серебра);
3) малая механическая прочность;
4) из-за наличия в окружающем воздухе влаги и оксидов медный и алюминиевый контакты образуют своеобразный гальванический элемент. Под действием ЭДС этого элемента происходит электрохимическое разрушение контактов (электрохимическая коррозия). В связи с этим при соединении с медью алюминий должен покрываться тонким слоем меди электролитическим путем либо оба металла необходимо покрывать серебром. Алюминий и его сплавы (дюраль, силумин) применяются главным образом как материал для шин и конструкционных деталей аппаратов.
Вольфрам. Положительные свойства: высокая дугостойкость, большая стойкость против эрозии, сваривания. Высокая твердость вольфрама позволяет применять его при частых включениях и отключениях.
Недостатки: высокое удельное сопротивление, малая теплопроводность, образование прочных оксидных и сульфидных пленок. В связи с образованием пленок и их высокой механической прочностью вольфрамовые контакты требуют большого нажатия.
В реле на малые токи с небольшим нажатием применяются стойкие против коррозии материалы — золото, платина, палладий и их сплавы.
Металлокерамические материалы. Рассмотрение свойств чистых металлов показывает, что ни один из них не удовлетворяет полностью всем требованиям, предъявляемым к материалу контактов.
Основные необходимые свойства контактного материала— высокие электрическая проводимость и дугостойкость — не могут быть получены за счет сплавов таких материалов, как серебро и вольфрам, медь и вольфрам, так как они не образуют сплавов. Материалы, обладающие необходимыми свойствами, получают методом порошковой металлургии (металлокерамики). Полученные таким методом материалы сохраняют физические свойства входящих в них металлов. Дугостойкость металлокерамики обеспечивается такими компонентами, как вольфрам, молибден. Низкое переходное сопротивление контакта достигается использованием в качестве второго компонента серебра или меди. Чем больше содержание вольфрама, тем выше дугостойкость, механическая прочность и меньше возможность приваривания металлокерамических контактов. Но соответственно растет переходное сопротивление контактов и уменьшается их теплопроводность. Обычно металлокерамика с содержанием вольфрама выше 50 % применяется для аппаратов защиты на большие токи КЗ.
Композиции из тонко измельченных порошков с диаметром зерна менее 10 мкм имеют мелкодисперсную структуру и обладают большой механической прочностью, Их износостойкость в 1,5—2 раза выше, чему материалов не мелкодисперсного типа.
Для контактов аппаратов высокого напряжения наиболее распространена металлокерамика КМК-А60, КМК-А61, КМК-Б20, КМК-Б21
В аппаратах низкого напряжения чаще всего применяется металлокерамика КМК-А10 из серебра и оксида кадмия CdO. Отличительной особенностью этого материала является диссоциация CdO на пары кадмия и кислород. Выделяющийся газ заставляет дугу быстро перемещаться по поверхности контакта, что значительно снижает температуру контакта и способствует деионизации дуги. Металлокерамика КМК-А20, состоящая из серебра и 10 % оксида меди, обладает большей износостойкостью, чем КМК-А10.
Серебряно-никелевые металлокерамики хорошо обрабатываются, обладают высокой стойкостью против электрического износа. Контакты из этих материалов обеспечивают низкое и устойчивое переходное сопротивление, но более подвержены привариванию, чем контакты КМК-А60, КМК-Б20, КМК-А10.
Серебряно-графитовые и медно-графитовые контакты благодаря высокой устойчивости против сваривания применяются как дугогасительные. Применение металлокерамики увеличивает стоимость аппаратуры, однако в эксплуатации эти затраты окупаются за счет увеличения срока службы аппарата и повышения его надежности.
Дата публикования: 2014-11-04; Прочитано: 10648 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!