Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Жидкометаллические контакты



Наиболее характерные недостатки твердометаллических контактов следующие:

1.С ростом длительного номинального тока возрастают необходимое значение контактного нажатия, габариты и масса контактов. При токах 10 кА и выше резко увели­чиваются габариты и масса аппарата в целом.

2.Эрозия контактов ограничивает износостойкость ап­парата.

3.Окисление поверхности и возможность приваривания контактов понижают надежность аппарата. При больших токах КЗ контактные нажатия достигают больших значе­ний, что увеличивает необходимую мощность привода, габариты и массу аппарата.

Рассмотрим принцип действия контактора с жидкометаллическим контактом (ЖМК) (рис.7.12). Внешняя цепь подключается к электродам 1 и 2. Корпус 3 выполнен из электроизоляционного материала. Полости корпуса запол­нены жидким металлом 4 и соединяются между собой от­верстием 5. Внутри полостей корпуса плавают пустотелые ферромагнитные цилиндры 6. При подаче напряжения на катушку 7 цилиндры 6 опускаются вниз. Жидкий металл поднимается и через отверстие 5 соединяет электроды 1 и 2, контактор включается.

По сравнению с твердометаллическими ЖМК облада­ют следующими преимуществами:

1. Малое переходное сопротивление и высокие допустимые плотности тока на поверхности раздела жидкий ме­ электроизоляционного материала. Полости корпуса запол­нены жидким металлом 4 и соединяются между собой от­верстием 5. Внутри полостей корпуса плавают пустотелые ферромагнитные цилиндры 6. При подаче напряжения на катушку 7 цилиндры 6 опускаются вниз. Жидкий металл поднимается и через отверстие 5 соединяет электроды / и 2, контактор включается.

По сравнению с твердометаллическими ЖМК облада­ют следующими преимуществами:

1. Малое переходное сопротивление и высокие допусти­мые плотности тока на поверхности раздела жидкий ме­талл—электрод (до 120 А/мм2), что позволяет резко сократить габаритные размеры контактного узла и контактное нажатие, особенно при больших токах.

2. Отсутствие вибрации, приваривания, залипания и окисления контактов приих коммутации.

3. Высокая механическая и электрическая износостойкость ЖМК, что позволяет создавать аппараты с большим сроком службы.-

4. Возможность разработки коммутационных ап­паратов на новом принципе [автоматический восстанавли­вающийся предохранитель и др.] благодаря свойст­вам текучести жидкого металла.

5. Возможность работы ЖМК при высоких внешних давлениях, высоких температурах, в глубоком вакууме.

К электрическим аппаратам обычно предъявляется тре­бование сохранять работоспособность в интервале темпе­ратур ±40СС. Очевидно, что жидкий металл должен со­хранять свое состояние в указанном интервале. Из извест­ных материалов только ртуть находится в жидком виде при температуре ниже 0°С и может быть в чистом виде при­годна для ЖМК. Высокая токсичность паров ртути суще­ственно осложняет технологию ее применения.

В ЖМК перспективно применение диэлектрического или металлокерамического твердого каркаса, пропитанного жидким металлом.

 
 


Рис. 7.12. Контактор с жидкометаллическим контактом

ГЕРМЕТИЧНЫЕ КОНТАКТЫ (ГЕРКОНЫ)

Наименее надежным узлом электромагнитных реле яв­ляется контактная система. Электрическая дуга или искра, образующиеся при размыкании и замыкании контактов, приводят к их быстрому разрушению. Этому также способ­ствуют окислительные процессы и покрытие контактных поверхностей слоем пыли, влаги, грязи. Существенным не­достатком электромагнитных реле является и наличие трущихся механических деталей, износ которых также сказывается на их работоспособности. Попытки разместить контакты и электромагнитный механизм в герметизирован­ном объеме с инертным газом не приводят к положительным результатам из-за больших технологических и кон­структивных трудностей, а также из-за того, что контак­ты при этом не защищаются от воздействия продуктов износа и старения изоляционных материалов. Другим не­достатком электромагнитных реле является их инерцион­ность, обусловленная значительной массой подвижных де­талей. Для получения необходимого быстродействия при­ходится применять специальные схемы форсировки, что приводит к снижению надежности и росту потребляемой мощности.

Перечисленные недостатки электромагнитных реле при­вели к созданию реле с герметичными магнитоуправляемыми контактами (герконами).

Простейшее герконовое реле с замыкающим контактом изображено на рис. 7.13, а. Контактные сердечники (КС) 1 и 2 изготавливаются из ферромагнитного материала с высокой магнитной проницаемостью (пермаллоя) и вварива­ются в стеклянный герметичный баллон 3. Баллон запол­нен инертным газом — чистым азотом или азотом с не­большой (около 3 %) добавкой водорода. Давление газа внутри баллона составляет (0,4—0,6) • 105 Па. Инертная среда предотвращает окисление КС. Баллон устанавлива­ется в обмотке управления 4. При подаче тока в обмотку возникает магнитный поток Ф, который проходит по КС 1 и 2 через рабочий зазор б между ними и замыкается по воздуху вокруг обмотки 4. Поток Ф при прохождении через рабочий зазор создает тяговую электромагнитную силу Рэ, которая, преодолевая упругость КС, соединяет их между собой. Для улучшения контактирования поверхно­сти касания покрываются тонким слоем (2—50 мкм) золота, родия, палладия, рения, серебра и др.

При отключении обмотки магнитный поток и электро­магнитная сила спадают и под действием сил упругости КС размыкаются. Таким образом, в герконовых реле отсутствуют детали, подверженные трению (места крепления якоря в электромагнитных реле), а КС одновременно вы­полняют функции магнитопровода, токопровода и пружины.

В связи с тем что контакты в герконе управляются маг­нитным полем, герконы называют магнитоуправляемыми контактами.

На основе герконов могут быть созданы также реле с размыкающими и переключающими контактами. В гер­коне с переключающим контактом (рис. 7.14, а) неподвиж­ные КС 1, 3 и подвижный 2 размещены в баллоне 4. При появлении сильного магнитного поля КС 2 притягивается к КС 1 и размыкается с КС 3. Один из КС переключаю­щего геркона (например, 2) может быть выполнен из не­магнитного материала (рис. 7.14, б). Герконовое реле (рис 7.14, в) имеет два подвижных КС 1, 2, два неподвижных КС 5, 6 и две обмотки управления 7, 8. При согласном включении обмоток замыкаются КС 1 и 2. При встречном включении обмоток КС 1 замыкается с КС 5, а КС 2 с КС 6. При отсутствии тока в обмотках все КС разомкнуты. Гер­коновое реле (рис. 7.14, г) имеет переключающий контакт 3 сферической формы. При согласном включении обмоток 7 и 8 контакт 3 притягивается к КС и КС 2 и замыкает их. После отключения обмоток 7 и 8 и при согласном вклю­чении обмоток 9 и 10 контакт 3 замыкает КС 5 и КС 6. Так как КС герконов выполняют функции возвратной пружины, им придаются определенные упругие свойства. Упругость КС обусловливает возможность их вибрации («дребезга») после удара, который сопутствует срабаты­ванию. Длительность такой вибрации достигает 0,25 мс при общем времени срабатывания 0,5—1 мс.

 
 


Рис. 7.13. Простейшее герконовое реле с симметричным замыкающим контактом

 
 


Рис. 7.14. Переключающие герконы

Одним из способов устранения влияния вибраций является исполь­зование жидкометаллических контактов. В переключаю­щем герконе (рис. 7.15, а) внутри подвижного КС 1 име­ется капиллярный канал, по которому из нижней части баллона 4 поднимается ртуть 5. Ртуть смачивает поверх­ности касания КС 1 с КС 2 или КС 3. В момент удара контактов при срабатывании возникает их вибрация. Из-за ртутной пленки на контактной поверхности КС 1 вибрация не приводит к разрыву цепи. В кон­струкции на рис. 7.15, б между КС 2, КС 3 и ртутью 5 находится ферромагнитная изоляционная жидкость 6. При возникновении магнитного поля ферромагнит­ная жидкость 6 перемещается вниз, в положение, при котором поток будет наибольшим. Ртуть вытесняется вверх и замыкает КС 2 и КС 3. Следует отметить, что жидкометаллический контакт позволяет уменьшить переходное сопротивление и значительно увеличить коммутируемый ток. На­личие ртути удлиняет процесс разрыва контактов, что уве­личивает время отключения реле.

Управление герконом можно осуществлять и с помощью постоянного магнита. Если постоянный магнит установлен вблизи геркона, его магнитный поток замыкается через КС, которые в результате этого находятся в замкнутом состоянии. Использование постоянного магнита совместно с управляющей катушкой позволяет создать герконовое реле с размыкающим контактом.

 
 


Рис.7.15. Ртутные герконы





Дата публикования: 2014-11-04; Прочитано: 2252 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...