Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Линейные операторы в евклидовом пространстве



Как уже отмечалось в §1.4 (теорема 3), в унитарном пространстве всякий линейный оператор имеет собственный вектор (одномерное инвариантное подпространство). В случае евклидова пространства это утверждение неверно. Однако имеет место следующая

ТЕОРЕМА 1. У всякого линейного оператора в евклидовом пространстве существует одномерное или двумерное инвариантное подпространство.

ДОКАЗАТЕЛЬСТВО. Выберем в базис . Оператору в этом базисе соответствует матрица .

Рассмотрим систему уравнений

(1)

и будем искать для нее ненулевое решение . Такое решение существует тогда и только тогда, когда определитель

равен нулю. Приравняв его нулю, мы получим уравнение ой степени относительно с действительными коэффициентами. Пусть есть корень этого уравнения. Возможны два случая:

a) есть вещественный корень этого уравнения. Тогда можно найти вещественные не все равные нулю числа , являющиеся решением системы (1). Считая их координатами некоторого вектора в базисе , мы можем систему (1) переписать в виде

(где столбец из координат вектора )

или ,

т. е. порождает одномерное инвариантное подпространство.

b) , т. е. комплексно. Пусть

есть решение системы (1), подставляя эти числа вместо в (1) и отделяя вещественную часть от мнимой, получим:

(2)

и соответственно

(2')

Будем теперь (соответственно ) считать координатами некоторого вектора (соответственно ) в , тогда соотношения (2) и (2') можно записать следующим образом:

(3)

Равенства (3) означают, что двумерное подпространство, порожденное векторами и , инвариантно относительно . □

Если потребовать в доказательстве теоремы, чтобы базис был ортонормированным, а оператор нормальным, то векторы и будут ортогональными. Действительно, если собственное значение, то и также будет собственным значением (как корни многочлена с действительными коэффициентами). Соответствующие собственные векторы

,

будут ортогональными (теорема 2 §1.4). Тогда . Следовательно, .

Докажем теперь, что подпространство векторов , ортогональных векторам и , инвариантно, относительно оператора . Оно является пересечением двух подпространств, ортогональных собственным векторам нормального оператора. Если , т. е. , то

.

Аналогично, .

Рассмотрим ограничение оператора в двумерном подпространстве, порождённом векторами и из доказательства предыдущей теоремы. Матрица оператора в базисе будет:

.

Представляя комплексное число в тригонометрической форме , придадим матрице следующий вид

.

Таким образом, оператор есть композиция операторов с матрицами

и .

Первый из которых соответствует преобразованию подобия с центром в начале координат и коэффициентом растяжения ; второй поворот в плоскости на угол около начала координат.

ТЕОРЕМА 2. (основная о нормальных операторах в евклидовых пространствах). Матрица нормального оператора в евклидовом пространстве имеет клеточно-диагональный вид в подходящем ортонормированном базисе. В клетках порядка 1 находятся действительные числа, а клетки порядка 2 имеют вид .

ДОКАЗАТЕЛЬСТВО. Оно аналогично доказательству теоремы 3 §1.4 о нормальных операторах. Отличие состоит в том, что мы не можем утверждать, что характеристический многочлен всегда имеет действительный корень. Но тогда он имеет 2 комплексно-сопряжённых корня и , которые по теореме 1 позволяют определить подпространство размерности 2, инвариантное относительно , которое порождено двумя ортогональными векторами и . Клетка матрицы ограничения оператора в базисе имеет вид .

Так как пространство векторов, ортогональных векторам и так же инвариантно относительно , то осталось воспользоваться индукцией по размерности пространства. □

ТЕОРЕМА 3. (основная об ортогональных операторах в евклидовых пространствах). В подходящем ортонормированном базисе матрица ортогонального оператора клеточно-диагональная с клетками порядка 1 и 2; причём в клетках порядка 1 содержатся числа 1 или -1, а клетки порядка 2 имеют вид , .

ДОКАЗАТЕЛЬСТВО. Оно следует из теоремы 2 о нормальных операторах в евклидовых пространствах и того факта, что собственные значения ортогонального оператора (как частного случая унитарного оператора) по модулю равны 1. Действительно, если модули собственных значений чисел и равны 1, то в тригонометрической форме и клетка имеет вид . □

Пример 3. Рассмотрим трёхмерное евклидово пространство . По теореме 3 для каждого ортогонального оператора пространства можно найти такую ортонормированную систему векторов , что матрица оператора будет иметь один из следующих шести видов:

Операторы соответствуют следующим преобразованиям пространства:

a) тождественное преобразование;

b) зеркальное отображение относительно плоскости ;

c) зеркальное отображение относительно прямой ;

d) зеркальное отображение относительно точки ;

e) вращение на угол около оси ;

f) вращение на угол около оси , сопровождаемое зеркальным отображением относительно плоскости .

Для симметрических операторов теорема формулируется так же, как и для эрмитовых. Согласно теореме 2 данного параграфа матрица оператора распадается на клетки порядков 1 или 2. При этом клетки порядка 2 появляются только тогда, когда характеристический многочлен оператора имеет комплексные корни. Но характеристические корни симметрических операторов действительны. Следовательно, справедлива

ТЕОРЕМА 4. (основная о симметрических операторах). Матрица симметрического оператора в подходящем ортонормированном базисе является диагональной с действительными числами по главной диагонали.

ТЕОРЕМА 5. (основная о кососимметрических операторах в евклидовых пространствах). В подходящем ортонормированном базисе матрица кососимметрического оператора евклидова пространства имеет клеточно-диагональный вид с клетками порядков 1 или 2; причём в клетках порядка 1 находится число 0, а клетки порядка 2 имеют вид .

ДОКАЗАТЕЛЬСТВО следует из теоремы 2 о нормальных операторах в евклидовых пространствах и того факта, что собственные значения кососимметрического оператора либо 0, либо чисто мнимое число. □





Дата публикования: 2014-11-04; Прочитано: 866 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...