Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Нормальные операторы



Линейный оператор унитарного пространства называется нормальным, если

,

т. е. если он перестановочен со своим сопряжённым.

Если ортонормированный базис пространства и матрица нормального оператора в этом базисе, то по теореме из §1.3 имеем .

Справедливы следующие три теоремы о нормальных операторах.

ТЕОРЕМА 1. Всякий собственный вектор нормального оператора , соответствующий собственному значению будет и собственным вектором оператора , который соответствует комплексно-сопряжённому значению .

ДОКАЗАТЕЛЬСТВО. Если линейный оператор, а тождественный оператор , то также линейный оператор, сопряжённым для которого будет (т. к. ). По условию нормальный оператор, значит . Нетрудно проверить, что

.

Из того, что является собственным вектором оператора следует, что , значит

То есть и . □

ТЕОРЕМА 2. Собственные векторы, соответствующие различным собственным значениям нормального оператора будут ортогональны.

ДОКАЗАТЕЛЬСТВО. Пусть .

Тогда

.

Откуда , следовательно , т. к. . □

ТЕОРЕМА 3. (основная о нормальных операторах). Для каждого нормального оператора в унитарном пространстве найдётся ортонормированный базис, составленный из собственных векторов оператора . Матрица имеет в этом базисе диагональный вид.

ДОКАЗАТЕЛЬСТВО. Пусть характеристический корень линейного оператора (по основной теореме алгебры комплексных чисел [3] такой корень существует). Ему соответствует собственный вектор . Рассмотрим множество , которое является подпространством пространства и называется ортогональным к . Так как , то для любого вектора справедливо

.

Таким образом, как только . Такое подпространство называется инвариантным, относительно оператора .

Рассмотрим оператор , заданный на следующим образом: . Оно называется ограничением на . Заметим, что собственные векторы будут собственными векторами и .

Далее аналогично находим в собственный вектор оператора . Пусть подпространство векторов, ортогональных к и . будет опять инвариантным относительно , т. к. является пересечением двух инвариантных подпространств. В нём снова найдётся собственный вектор оператора . И т. д.

Продолжая указанную процедуру, получим ортогональный базис пространства , составленный из собственных векторов оператора . Остаётся нормировать этот базис.

В этом базисе матрица линейного оператора будет иметь диагональный вид [2]. □





Дата публикования: 2014-11-04; Прочитано: 1014 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...