Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Дифференциальная форма уравнений Максвелла



1. Применяя теорему Стокса, преобразуем левую часть первого уравнения Максвелла к виду: .

Тогда само уравнение можно переписать как , откуда, в силу произвольности поверхности интегрирования, имеем:

2. Применяя теорему Остроградского ко второму уравнению Максвелла, находим:

,

откуда, в силу произвольности объема интегрирования, имеем:

3. Применяя теорему Стокса, преобразуем левую часть третьего уравнения Максвелла к виду:

.

Тогда само уравнение можно переписать как , откуда, в силу произвольности поверхности интегрирования, имеем:

4. Применяя теорему Остроградского, преобразуем левую часть четвертого уравнения Максвелла к виду:

.

Тогда само уравнение можно переписать как , откуда, в силу произвольности объема интегрирования, имеем:





Дата публикования: 2014-11-04; Прочитано: 600 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.005 с)...