Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Структурные схемы систем и их типовые динамические звенья



Для исследования различных по природе и конструкции систем регулирования с помощью единого математического аппарата их представляют в виде структурных схем. Такие схемы содержат узлы разветвления, узлы суммирования и динамические звенья (рис. I-10).

Узел разветвления. В таком узле входной сигнал хвх разделяется, не меняя своего значения, и направляется далее по нескольким каналам

где xвых1, xвых2, …, xвых n — сигналы в выходных каналах узла разветвления.

Суммирующий узел, к которому подходит несколько сигналов xвх1, xвх2, …, xвх n формирует на выходе только один сигнал xвых, равный алгебраической сумме входных сигналов

Динамическое звено. Проходя такое звено, входной сигнал xвх изменяет сигнал на выходе xвых по форме и величине (в некоторых случаях только по величине).

В основу классификации звеньев положены соответствующие уравнения динамики. Переходные процессы систем регулирования (пневматических, электрических, механических и др.), имеющих разную физическую природу и различное конструктивное оформление, но обладающих одинаковыми динамическими свойствами, подобны. Поэтому каждая такая система описывается одним или несколькими одинаковыми звеньями.

Большинство звеньев обладает направленностью действия (детектирующее свойство). Сигнал проходит через них только в одном направлении — с входа звена на его выход, в обратном направлении звено сигнал не пропускает. Например, изменение температуры рабочего спая термоэлектрического преобразователя приводит к изменению термоэлектродвижущей силы на его свободных концах.

Звенья систем могут быть статическими и астатическими. У статического звена при постоянном входном воздействии выходная величина со временем устанавливается на постоянном значении, отличном от первоначального, а у астатического звена в установившемся режиме выходная величина непрерывно изменяется с постоянной скоростью или ускорением.

Динамические звенья называют типовыми, если изменение проходящего через них сигнала описывается алгебраическим или дифференциальным уравнением не выше 2-го порядка. Они имеют одну входную и одну выходную величину. Титовыми звеньями являются: усилительное, интегрирующее, дифференцирующее, апериодическое, колебательное и запаздывающее. В табл. I.3 приведены уравнения динамики указанных звеньев, их переходные характеристики и графики.

Соединения звеньев. В реальных системах звенья объединяют последовательно, параллельно, а также в соединения с замкнутой обратной связью (рис I-11). При последовательном соединении звеньев (рис. I-11, а) выходная величина предыдущего звена без искажения поступает на вход последующего звена. При таком соединении звеньев входной величиной является входная величина первого по ходу сигнала звена, а выходной— выходная величина последнего из них.

При параллельном соединении звеньев (рис I-11; б) входной сигнал через узел разветвления поступает на входы всех элементарных звеньев. Выходные сигналы этих звеньев суммируются и направляются на выход соединения.

При замкнутой обратной связи (рис. I-11, в) система состоит из двух цепочек звеньев, каждая из которых может представлять собой достаточно сложное соединение. По одной из этих цепочек сигнал проходит последовательно через звенья от входа соединения к его выходу, т.е. по прямой связи, а по другой — от выхода соединения к входу, т.е. по обратной связи. При этом на вход первой цепочки звеньев подается сигнал x0, равный сумме входной величины соединения хвх и выходной величины второй цепочки звеньев хп

Выходной величиной такого соединения хвых является выход к-го звена; одновременно этот же сигнал подается на вход (к + 1)-го звена.

Если сигнал с выхода обратной связи и основной входной сигнал соединения действуют в одном направлении, то обратная связь называется положительной, а если эти сигналы действуют в противоположных направлениях — отрицательной.

Комбинации этих соединений звеньев позволяют представить любую сложную АСР химико-технологического процесса.


9. Свойства объектов регулирования: ёмкость, самовыравнивание, запаздывание и их количественная оценка.

Самовыравнивание объекта характеризует его устойчивость. Самовыравниванием называют свойство устойчивого объекта самостоятельно устанавливаться в равновесное состояние после изменения своей входной величины. В объектах с самовыравниванием ступенчатое изменение входной величины приводит к изменению выходной величины со скоростью, постепенно уменьшающейся до нуля, что связано с наличием внутренней отрицательной обратной связи. Количественно эта характеристика определяется степенью самовыравнивания ρ, под которой понимают отношение изменения входной величины объекта (Х, Z) к изменению выходной величины по достижении объектом равновесного состояния y

Чем больше степень самовыравнивания, тем меньше отклонение выходной величины от первоначального положения.

Емкость объекта является свойством, присущим всем динамическим объектам. Она характеризует их инерционность — степень влияния входной величины на скорость изменения выходной. Даже ступенчатое изменение входной величины объекта приводит к изменению выходной величины с конечной скоростью. Под емкостью понимают такое изменение входной величины, которое приводит к изменению его выходной величины на единицу за единичный отрезок времени

Чем больше емкость, тем меньше скорость изменения выходной величины объекта, и наоборот.

Запаздывание объекта выражается в том, что его выходная величина начинает изменяться не сразу после нанесения возмущения, а только через некоторый промежуток времени т, называемый временем запаздывания. Все реальные объекты обладают запаздыванием, так как изменение потоков вещества или тепла распространяется в объектах с конечной скоростью и требуется время для прохождения сигнала от места нанесения возмущения до места, где фиксируется изменение выходной величины. Обозначив это расстояние через l, a скорость прохождения сигнала через s, выразим время запаздывания следующим образом:

Влияние свойств объекта на вид его переходного процесса будем изучать на примерах одномерных объектов с сосредоточенными параметрами.

В зависимости от вида дифференциального уравнения динамики реального объекта химической технологии целесообразно различать объекты первого, второго и высокого порядков.

По способности восстанавливать равновесное состояние при конечном изменении входных величин можно подразделять объекты на нейтральные, устойчивые и неустойчивые (рис. II-4)





Дата публикования: 2015-09-17; Прочитано: 453 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...