![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Рассмотрим течение вязкой жидкости между двумя горизонтальными пластинами, расстояние между которыми равно h. Поскольку частицы жидкости "прилипают" к пластинам, то скорость слоев текущей жидкости будет различной. Качественно распределение скоростей слоев изображено на рис. 4.4. Если известна характерная скорость течения (например, скорость v на оси потока), то легко оценить силы вязкого трения. Согласно (4.3)
![]() | (4.6) |
Отсюда следует, что силы вязкого трения убывают с увеличением расстояния между пластинами. В общем случае можно считать, что силы вязкости, возникающие в потоке, обратно пропорциональны квадрату характерного поперечного размера потока и пропорциональны скорости.
![]() |
Рис. 4.4. |
С точки зрения динамики (см. уравнение 4.5) при отсутствии внешних сил F вязкостью можно пренебречь, если силы давления -grad p значительно превосходят силы вязкости . На первый взгляд, при течении жидкости между параллельными пластинами (равно как и по трубе постоянного сечения), где градиенты давлений отсутствуют вовсе, вязкостью в принципе нельзя пренебречь. И все наши выводы о течении идеальной жидкости становятся неверными.
Однако надо принять во внимание, что из-за флуктуаций линии тока "норовят" искривиться, и частицы в них движутся с ускорением. Поэтому давления p1 и p2 по разные стороны изогнутой трубки тока будут различными: p2>p1 (рис. 4.5). Возникающие градиенты давления обеспечивают криволинейное течение жидкости:
![]() | (4.7) |
Последнее уравнение является приближенным уравнением Навье-Стокса ( =0) и записано в отсутствии внешних сил. Тогда критерий малости сил вязкости сводится к неравенству
![]() | (4.8) |
В гидродинамике очень часто используют понятие силы инерции F и=- d v /dt. С точки зрения наблюдателя, движущегося вместе с частицей жидкости, она находится в покое, потому что силы давления, вязкости и инерции уравновешивают друг друга (см. 4.5):
![]() | (4.9) |
Неравенство (4.8) означает, что силы вязкости значительно меньше сил инерции. В частном случае течения жидкости между пластинами силы инерции при искривлении трубок тока жидкости
![]() | (4.10) |
где v2/h - характерное центростремительное ускорение. В общем случае, силы инерции обратно пропорциональны поперечному размеру потока и пропорциональны квадрату скорости. С учетом оценок (4.6) и (4.10) условие (4.8) перепишется следующим образом:
![]() | (4.11) |
Здесь - число Рейнольдса, характеризующее отношение сил инерции и сил вязкости. Таким образом, текущую жидкость можно рассматривать как невязкую, если число Рейнольдса для такого течения Re>1. Однако и в этом случае вязкость играет вспомогательную роль. При не очень высоких скоростях течения силы вязкости "гасят" компоненты скорости жидкости, поперечные к потоку, препятствуя, тем самым, возникновению неустойчивого течения (см. ниже).
![]() |
Рис. 4.5. |
Дадим некоторые оценки течения жидкости по круглой трубе радиуса R. Число Рейнольдса в этом случае . Если принять радиус трубы R = 1 см и скорость течения v = 1 см/с, то для воды (
=103 кг/м3, при t=15
) число Re=86. Это означает, что силы вязкости не существенны, и воду можно рассматривать как невязкую жидкость. Однако это приближение становится несправедливым, если радиус трубки уменьшить на два порядка, и Re=0,86<1. При таком течении распределение давлений и скоростей в потоке уже не подчиняется уравнению Бернулли. Еще в большей степени это относится к вязкому глицерину (
=1,4 кг/(м*с)). При течении воздуха по трубе (
=1,3 кг/м3,
=1,8*10-5 кг/(м*с)) число Рейнольдса приблизительно на порядок меньше, чем при аналогичном течении воды. Это указывает на то, что силы вязкости при течении воздуха и других газов играют большую роль, чем при аналогичном течении воды.
Дата публикования: 2015-07-22; Прочитано: 498 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!