Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Теорема Гаусса



В предыдущем разделе было показано, что окружающую точечный заряд q сферическую поверхность любого радиуса r пересекает линий . Отсюда вытекает, что из точечного заряда выходит линий.

Поток вектора через некоторую поверхность численно равен количеству линий , пересекающих эту поверхность. Следовательно, поток вектора через охватывающую заряд сферическую поверхность равен . Знак потока совпадает со знаком заряда.

Не сферическая поверхность без «морщин» пересекается каждой линией только один раз. Поэтому число пересечений равно количеству линий, выходящих из заряда, т.е. .

Если поверхность с «морщинами», то число пересечений может быть только нечетным и потому противоположные вклады, вносимые в общий поток

Рис. 13.3. взаимно уничтожаются, за

исключением одного.

Таким образом, для любой формы замкнутой поверхности, охватывающей точечный заряд q, поток вектора сквозь эту поверхность равен .

Пусть внутри некоторой замкнутой поверхности заключено несколько точечных зарядов произвольный знаков: q 1, q 2 и т.д. Поток вектора по определению равен

(13.8)

(кружок у знака интеграла указывает на то, что интегрирование производится по замкнутой поверхности).

В силу принципа суперпозиции полей

.

Подставив это в выражение для потока, получим

,

где - нормальная составляющая напряженности поля, создаваемого і -м зарядом в отдельности.

Но .

Следовательно . (13.9)

Доказанное утверждение называется теоремой Гаусса. Эта теорема может быть сформулирована следующим образом: поток вектора напряженности электрического поля через замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на e 0.

Если внутри поверхности заряды отсутствуют, поток равен нулю.

Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плотностью r, теорема Гаусса должна быть записана следующим образом:

, (13.10)

где интеграл справа берется по объему V, охватываемому поверхностью S.

Теорема Гаусса позволяет найти напряженность поля гораздо проще, чем с использованием формулы для напряженности поля точечного заряда и принципа суперпозиции.





Дата публикования: 2014-10-04; Прочитано: 900 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...