Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
В предыдущем разделе было показано, что окружающую точечный заряд q сферическую поверхность любого радиуса r пересекает линий . Отсюда вытекает, что из точечного заряда выходит линий.
Поток вектора через некоторую поверхность численно равен количеству линий , пересекающих эту поверхность. Следовательно, поток вектора через охватывающую заряд сферическую поверхность равен . Знак потока совпадает со знаком заряда.
Не сферическая поверхность без «морщин» пересекается каждой линией только один раз. Поэтому число пересечений равно количеству линий, выходящих из заряда, т.е. .
Если поверхность с «морщинами», то число пересечений может быть только нечетным и потому противоположные вклады, вносимые в общий поток
Рис. 13.3. взаимно уничтожаются, за
исключением одного.
Таким образом, для любой формы замкнутой поверхности, охватывающей точечный заряд q, поток вектора сквозь эту поверхность равен .
Пусть внутри некоторой замкнутой поверхности заключено несколько точечных зарядов произвольный знаков: q 1, q 2 и т.д. Поток вектора по определению равен
(13.8)
(кружок у знака интеграла указывает на то, что интегрирование производится по замкнутой поверхности).
В силу принципа суперпозиции полей
.
Подставив это в выражение для потока, получим
,
где - нормальная составляющая напряженности поля, создаваемого і -м зарядом в отдельности.
Но .
Следовательно . (13.9)
Доказанное утверждение называется теоремой Гаусса. Эта теорема может быть сформулирована следующим образом: поток вектора напряженности электрического поля через замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на e 0.
Если внутри поверхности заряды отсутствуют, поток равен нулю.
Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плотностью r, теорема Гаусса должна быть записана следующим образом:
, (13.10)
где интеграл справа берется по объему V, охватываемому поверхностью S.
Теорема Гаусса позволяет найти напряженность поля гораздо проще, чем с использованием формулы для напряженности поля точечного заряда и принципа суперпозиции.
Дата публикования: 2014-10-04; Прочитано: 900 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!