Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Решение. 1) Область определения функции



1) Область определения функции

.

2) Исследование на непрерывность и классификация точек разрыва.

Заданная функция непрерывна всюду, кроме точки х = 4. Вычислим ее односторонние пределы в этой точке:

Таким образом, точка х = 4 является для заданной функции точкой разрыва второго рода, а прямая х = 4 – вертикальной асимптотой графика.

3) Исследование на экстремум и промежутки монотонности.

х –2 (–2; 4)   (4; 10)  
+ + не сущ.   +
max   min

.

4) Исследование графика на выпуклость, вогнутость, точки перегиба.

Так как , то график заданной функции точек перегиба не имеет. Остается выяснить вопрос об интервалах его выпуклости и вогнутости:

х  
не сущ. +
 

5) Исследование графика на наличие наклонных асимптот.

Таким образом, прямая – наклонная асимптота графика.

6) График заданной функции пересекает ось Оу в точке (0; –5).

По результатам исследования строим график.

 
 


у

-4 4 х

5. Решить систему двух линейных уравнений в области комплексных чисел по формулам Крамера. Найденные изобразить на комплексной плоскости; в виде векторов и записать в показательной и тригонометрической формах.

Решение. Найдем решение системы линейных уравнений по формулам Крамера . Для этого вычислим главный определитель системы и определители , учитывая, что – комплексное число, где .

Находим :

(т.к. );

Таким образом, решение данной системы уравнений в алгебраической форме записи:

в векторной форме записи

у

0,5

х

-2 0 3,5

-2

Найдем модуль и аргумент комплексных чисел ( или ; в 1 и 4 четвертях; во 2 и 3 четвертях, знак «+» или «–» выбираем так, чтобы аргумент был наименьшим по модулю).

Число принадлежит 3 четверти:

(аргумент );

(модуль ).

Число принадлежит 1 четверти:

;

Запишем числа в показательной и тригонометрической формах:

6. а) Вычислить площадь фигуры, расположенной в первом квадранте и ограниченной параболой , прямой и осью Ох.

б) Найти объем тела, образованного вращением этой фигуры вокруг оси Ох.





Дата публикования: 2014-10-20; Прочитано: 1080 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...