Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Диффузионное давление (1) в равновесии с противоположной электростатической силой (2), стремящейся удержать вместе ионы с противоположными зарядами (по С.Немечек, 1978)



Перемещение К+ из клетки наружу при отсутствии МП осуществляется по концентрационному градиенту этого иона, совершающему "осмотическую" работу. В силу возникающего мембранного потенциала ионы К+ возвращаются в клетку, т. е. совершается "электрическая работа": Aэл.= QE=nFE, где Q - количество электричества, n - валентность, F - число Фарадея, заряд моля одновалентных ионов (96500 Кл/гр • экв), Е - потенциал. По мере выхода ионов К+ растет Аэл. и несколько падает Аосм, в итоге достигается Е на мембране, при котором Аэл = Аосм.. Для иона К+, т. е. калиевый равновесный потенциал в упрощенной форме:

E=58 lg [K]н/ [K]в (формула Нернста).

Разность между текущим значением МП и Ек называют электрохимическим градиентом для К+. Электрохимический градиент - причина пассивного движения К+ (и любого другого иона) через мембрану в естественных условиях.

МПП гигантского аксона кальмара (- 70 мВ) близок к его Ек (- 75 мВ), но не равен ему, ибо МПП здесь формирует утечка и других ионов: Na+, Cl-. При этом поступление С1-в аксон, (Еcl> - 70 мВ) повышает, a Na+ понижает МПП (ENa=+55MB).

Итоговая величина Ем, создаваемого утечкой многих ионов, может быть достаточно точно рассчитана по формуле Гольдмана:

где Р - проницаемость мембраны для соответствующих ионов. Ее часто выражают в относительных величинах, принимая PK+ за 1. Для мембраны аксона кальмара в покое отношение PK: PNa: Рcl= 1: 0,04: 0,45

Рассмотренный ионный механизм формирует так называемый концентрационный потенциал (Еконц.) - основную часть реального МПП. В перфузируемом чистым солевым раствором гигантском аксоне кальмара это, по существу, единственный механизм формирования МПП. Но в естественных условиях в образовании МПП участвует еще один, добавочный механизм. Это так называемый прямой электрогенный эффект натрий-калиевого насоса. Напомним, что этот ионный насос работает, потребляя энергию АТФ, и его основным компонентом является мембранная К - Na-АТФаза. В норме АТФ к насосу поступает из аксональных митохондрий. Поэтому в лишенном аксоплазмы перфузируемом аксоне насос работает только при добавлении к перфузату АТФ. Для его работы, кроме того, требуется наличие в среде ионов К+, а внутри волокна - ионов Na+. Дело в том, что макромолекула насоса осуществляет свое рабочее движение - конформацию лишь в случае присоединения к ней снаружи ионов К+, а изнутри клетки - ионов Na+. Насос не работает в бескалиевых средах и при потере внутриклеточного Na+. Прямой электрогенный эффект насоса (который следует отличать от косвенного, т. е. от участия насоса в создании концентрационных градиентов) состоит в дополнительной поляризации мембраны, получающейся при неравенстве числа (q) ионов Na+ и К+, переносимых в каждом цикле работы насоса. Только если эти числа равны, насос работает электронейтрально.У гигантского аксона кальмара Rм относительно мало и поэтому Енас тоже невелико (1 мВ). В некоторых нервных клетках моллюсков, где Rм велико (мегаомы) - Енлс достигает десятка мВ.

Енас может быть быстро устранен блокадой мембранной Na - К-АТФазы с помощью сердечных гликозидов (уабаин и др.) или за счет снижения температуры до 5° С, наконец, за счет нарушения выработки АТФ (при действии динитрофенола и цианидов). Eконц. при этом не исчезает, а падает достаточно медленно по мере потери ионных градиентов на мембране из-за утечки Na+ и других ионов.

Таким образом, реальный МПП складывается из Еконц и Eнас.

В миелинизированных нервных волокнах у позвоночных потенциал покоя мембраны перехвата Ранвье составляет около 70 мВ. Его концентрационный компонент имеет в основном калиевую природу, как и в аксоне кальмара. Ионы С1- в его формировании принимают незначительное участие. Электрогенный эффект ионного насоса в нормальной среде здесь близок к нулю. И только при повышенной концентрации К+ снаружи [К]н этот эффект усиливается настолько, что может достигнуть 3 - 4 мВ. Последнее достигается за счет резкого усиления насосного тока.

Мембранный потенциал покоя в самой мембране проявляется как электрическое поле значительной напряженности (∼105В/ см). Это поле воздействует на макромолекулы мембраны и придает их заряженным группам определенную пространственную ориентацию. Особенно важно то, что электрическое поле МПП обеспечивает закрытое состояние так называемых активационных ворот натриевых каналов и открытое состояние их инактивационных ворот. Этим обеспечивается состояние покоя и готовности к возбуждению. Даже относительно небольшой сброс мембранного потенциала (частичная деполяризация) открывает активационные ворота этих каналов и выводит клетку из состояния покоя, дает начало возбуждению. При возбуждении, конечно, используется электрическая энергия, накопленная в МПП.

В плазматической мембране нервных и мышечных клеток роль МПП, по-видимому, исчерпывается сказанным. Однако для некоторых других мембран, например внутренней мембраны митохондрии, очевидно участие МПП в энергетических процессах - сопряжении дыхания и фосфорилирования. МПП (∼+200мВ) здесь создается в ходе биологического окисления и связан с возникновением градиента Н+-ионов. Все агенты, переносящие положительные заряды внутрь митохондрии, снижают ее МПП и разобщают дыхание и фосфорилирование.

В заключение остановимся на понятии собственного электрического потенциала мембраны. Под последним подразумевают потенциал поверхностей мембраны относительно ее внутренних частей (∼30м В). Этот потенциал имеет отрицательный знак - на поверхностях и положительный внутри мембраны.

Он определяется наличием выступающих наружу отрицательно заряженных групп (типа СОО-) у многих молекул, формирующих мембрану. Величина этого потенциала определяет способность поверхностей мембраны связывать катионы, в частности. Са2+, что существенно для работы воротных и других ее механизмов.

Собственный потенциал мембраны, поскольку он одинаков у обеих сторон мембраны, не входит в МПП.





Дата публикования: 2014-12-30; Прочитано: 219 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...