![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Пусть даны 2 ряда: (1),
(2), an, bn≥0
Признаки сравнения:
Пусть для членов рядов (1) и (2) выполн. неравенство an≤bn, для любых натур чисел, тогда: Если ряд (2) сход., то ряд (1) также сход., если ряд (1) расх., то (2) расх. тоже
Пусть дял членов рядов (1) и (2) выролн. условие: , А приндлеж. R A≠0, тогда ряды (1) и (2) сх. или расх. одновременно
Признак Д’Аламбера:
(1), an>0,
, тогда:
Если <1, то ряд 1 сход., Если
>1, то ряд 1 расх., Если
=1, то признак не срабатывает
Признак Коши:
1. Если для ряда 1 сущ. , то при
<1, ряд 1 сх, а при
>1, ряд 1 расх.
2. Интегральный признак Коши: если для ряда 1 с положит. членами выполн условия:
1)
2) сущ. непрерыв. невозраст. ф-ия f(x): an=f(n) для любых натур. n, то ряд 1 инесобств. интеграл сход. или расх одновременно:
α>1 – сход, α<1 – расх.
Дата публикования: 2015-03-26; Прочитано: 221 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!