![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Если в матрице выделить произвольно k строк и k столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу k-го порядка. Определитель этой матрицы называется минором kвадратного порядка матрицы А. Очевидно, что матрица А обладает минорами любого порядка от 1 до наименьшего из чисел m и n. Среди всех отличных от нуля миноров матрицы А найдется по крайней мере один минор, порядок которого будет наибольшим. Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Если ранг матрицы А равен r, то это означает, что в матрице А имеется отличный от нуля минор порядка r, но всякий минор порядка, большего чем r, равен нулю. Ранг матрицы А обозначается через r(A). Очевидно, что выполняется соотношение
Ранг матрицы находится либо методом окаймления миноров, либо методом элементарных преобразований.
ВОПРОС № 13-(31)
Сравнение бесконечно малых величин. Бесконечно большая величина. Правило Лопиталя. Раскрытие неопределенностей типа 0/0, бесконечность/ бесконечность
Правило Лопиталя, при 0 / 0.
Дата публикования: 2015-03-26; Прочитано: 214 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!