![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
1. Кинематическое описание движения жидкости.
При кинематическом описании движения жидкости удобнее всего рассматривать движение жидкости в данный момент времени в данной точке в целом, а не конкретно какой либо молекулы.
Основной характеристикой кинематического движения является скорость, которая характеризуется величиной и направлением в данный момент времени.
Для того чтобы описать движение жидкости рассматривают множество частиц жидкости, которые в различные моменты времени проходят через одну и ту же точку пространства. Если таких точек взять много и при этом зафиксировать время, то, в пространстве получится мгновенная картина распределения скоростей жидкости – поле скоростей. В каждой точке пространства будет указан вектор скорости той частицы жидкости, которая проходит через эту точку в рассматриваемый момент времени. Для графического представления поля скоростей используют линии тока - л инии, в каждой точке которых касательная совпадает по направлению со скоростью частиц жидкости в данный момент времени. Часть жидкости, ограниченную линиями тока называют трубкой тока.
Если поле скоростей, а следовательно, и соответствующие ему линии тока не меняются с течением времени, то движение жидкости называется стационарным или установившимся. Если же они меняются во времени, то движение называется нестационарным или неустановившимся. При стационарном движении скорость от времени не зависит, а зависит только от координат: В этом случае линии тока совпадают с траекториями движения отдельных частиц жидкости.
2. Уравнение движения и равновесия жидкостей.(ни в лекциях ни в учебнике этого нет.завтра спрошу на консультации, что конкретно он имел вииду и исправлю)
Рассмотрим движение идеальной жидкости. Выделим внутри неё некоторый объём V. Согласно второму закону Ньютона, ускорение центра масс этого объёма пропорционально полной силе, действующей на него. В случае идеальной жидкости эта сила сводится к давлению окружающей объём жидкости и, возможно, воздействию внешних силовых полей. Предположим, что это поле представляет собой силы инерции или гравитации, так что эта сила пропорциональна напряжённости поля и массе элемента объёма. Тогда
,
где S — поверхность выделенного объёма, g — напряжённость поля. Переходя, согласно формуле Гаусса — Остроградского, от поверхностного интеграла к объёмному и учитывая, что , где ρ — плотность жидкости в данной точке, получим:
В силу произвольности объёма V подынтегральные функции должны быть равны в любой точке:
Выражая полную производную через конвективную производную и частную производную:
получаем уравнение Эйлера для движения идеальной жидкости в поле тяжести:
![]() |
где — плотность жидкости,
— давление в жидкости,
— вектор скорости жидкости,
— вектор напряжённости силового поля,
— оператор набла для трёхмерного пространства.
3. Идеальная жидкость. Реальная жидкость обладает рядом свойств, таких как, например, вязкость – способность оказывать сопротивление перемещению одних частиц относительно других.Но прирассмотрении движения жидкости принято пользоваться понятием идеальной жидкости, то есть жидкости в которой отсутствует вязкость. Не смотря на то, что Идеальная жидкость — это идеализированная модель жидкости, она даёт достаточно хорошее описание реальных течений жидкостей. Математическое описание течений идеальных жидкостей позволяет найти теоретическое решение ряда задач о движении жидкостей.
Дата публикования: 2015-01-26; Прочитано: 2262 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!