Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Свойства полупроводников. Сравнительная характеристика полупроводников и металлов



Полупроводники - широкий класс веществ, характеризующийся значениями удельной электропроводности, лежащей в диапазоне между удельной элек-тропроводностью металлов и хороших диэлектриков, то есть эти вещества не могут быть отнесены как к диэлектрикам (так как не являются хорошими изоля-торами), так и к металлам (не являются хорошими проводниками электрического тока). К полупроводникам, например, относят такие вещества как германий, кремний, селен, теллур, а также некоторые оксиды, сульфиды и сплавы металлов.

Свойства:

1) С повышением температуры удельное сопротивление полупроводников уменьшается, в отличие от металлов, у которых удельное сопротивление с повышением температуры увеличивается. Причем как правило в широком интервале температур возрастание это происходит экспоненционально. Удельное сопротивление полупроводниковых кристаллов может также уменьшаться при воздействии света или сильных электронных полей.

2) Свойство односторонней проводимости контакта двух полупроводников. Именно это свойство используется при создании разнообразных полупроводни-ковых приборов: диодов, транзисторов, тиристоров и др.

3) Контакты различных полупроводников в определенных условиях при осве-щении или нагревании являются источниками фото - э. д. с. или, соответственно, термо - э. д. с.

Полупроводники отличаются от других классов твердых тел многими специфическими особенностями, главнейшими из которых являются [1]:

1) положительный температурный коэффициент электропроводности, то есть с повышением температуры электропроводность полупроводников растет;

2) удельная проводимость полупроводников меньше, чем у металлов, но больше, чем у изоляторов;

3) большие значения термоэлектродвижущей силы по сравнению с металлами;

4) высокая чувствительность свойств полупроводников к ионизирующим излучениям;

5) способность резкого изменения физических свойств под влиянием ничтожно малых концентраций примесей;

6) эффект выпрямления тока или неомическое поведение на контактах.

3. Физические процессы в p-n – переходе.

Основным элементом большинства полупроводниковых приборов является электронно-дырочный переход (р-n -переход), представляющий собой переходный слой между двумя областями полупроводника, одна из которых имеет электронную электропроводность, а другая — дырочную.

Образование p-n перехода. P-n переход в равновесном состоянии

Рассмотрим подробнее процесс образования p-n перехода. Равновесным называют такое состояние перехода, когда отсутствует внешнее напряжение. Напомним, что в р -области имеются два вида основных носителей заряда: неподвижные отрицательно заряженные ионы атомов акцепторной примеси и свободные положительно заряженные дырки; а в n -области имеются также два вида основных носителей заряда: неподвижные положительно заряженные ионы атомов акцепторной примеси и свободные отрицательно заряженные электроны.

До соприкосновения p и n областей электроны дырки и ионы примесей распределены равномерно. При контакте на границе p и n областей возникает градиент концентрации свободных носителей заряда и диффузия. Под действием диффузии электроны из n -области переходит в p и рекомбинирует там с дырками. Дырки из р -области переходят в n -область и рекомбинируют там с электронами. В результате такого движения свободных носителей заряда в пограничной области их концентрация убывает почти до нуля и в тоже время в р области образуется отрицательный пространственный заряд ионов акцепторной примеси, а в n -области положительный пространственный заряд ионов донорной примеси. Между этими зарядами возникает контактная разность потенциалов φк и электрическое поле Ек, которое препятствует диффузии свободных носителей заряда из глубины р- и n- областей через р-n- переход. Таким образом область, объединённая свободными носителями заряда со своим электрическим полем и называется р-n- переходом.

P-n -переход характеризуется двумя основными параметрами:

1. Высота потенциального барьера. Она равна контактной разности потенциалов φк. Это разность потенциалов в переходе, обусловленная градиентом концентрации носителей заряда. Это энергия, которой должен обладать свободный заряд чтобы преодолеть потенциальный барьер:

где k – постоянная Больцмана; е – заряд электрона; Т – температура; Nа и NД – концентрации акцепторов и доноров в дырочной и электронной областях соответственно; рр и рn – концентрации дырок в р- и n- областях соответственно; ni собственная концентрация носителей заряда в нелигированном полупроводнике, т=кТ/е - температурный потенциал. При температуре Т =270С т =0.025В, для германиевого перехода к =0,6В, для кремниевого перехода к =0,8В.

2. Ширина p-n-перехода (рис.1) – это приграничная область, обеднённая носителями заряда, которая располагается в p и n областях: lp-n = lp + ln:

, отсюда ,

где ε – относительная диэлектрическая проницаемость материала полупроводника; ε0 — диэлектрическая постоянная свободного пространства.

Толщина электронно-дырочных переходов имеет порядок (0,1-10)мкм. Если , то и p-n -переход называется симметричным, если , то и p-n -переход называется несимметричным, причём он в основном располагается в области полупроводника с меньшей концентрацией примеси.

В равновесном состоянии (без внешнего напряжения) через р-n переход движутся два встречных потока зарядов (протекают два тока). Это дрейфовый ток неосновных носителей заряда и диффузионный ток, который связан с основными носителями заряда. Так как внешнее напряжение отсутствует, и тока во внешней цепи нет, то дрейфовый ток и диффузионный ток взаимно уравновешиваются и результирующий ток равен нулю

Iдр + Iдиф = 0.

Это соотношение называют условие динамического равновесия процессов диффузии и дрейфа в изолированном (равновесном) p-n -переходе.

Поверхность, по которой контактируют p и n области называется металлургической границей. Реально она имеет конечную толщину - δм. Если δм<< lp-n, то p-n -переход называют резким. Если δм>> lp-n, то p-n -переход называют плавным.

Р-n переход при внешнем напряжении, приложенном к нему

Внешнее напряжение нарушает динамическое равновесие токов в p-n -переходе. P-n -переход переходит в неравновесное состояние. В зависимости от полярности напряжения приложенного к областям в p-n -перехода возможно два режима работы.

1) Прямое смещение p-n перехода. Р-n- переход считается смещённым в прямом направлении, если положительный полюс источника питания подсоединен к р -области, а отрицательный к n -области (рис.1.2)

При прямом смещении, напряжения к и U направлены встречно, результирующее напряжение на p-n -переходе убывает до величины к - U. Это приводит к тому, что напряженность электрического поля убывает и возобновляется процесс диффузии основных носителей заряда. Кроме того, прямое смещении уменьшает ширину p-n перехода, т.к. lp-n (к – U)1/2. Ток диффузии, ток основных носителей заряда, становится много больше дрейфового. Через p-n -переход протекает прямой ток

Iр-n=Iпр=Iдиф+Iдр Iдиф.

При протекании прямого тока основные носители заряда р-области переходят в n-область, где становятся неосновными. Диффузионный процесс введения основных носителей заряда в область, где они становятся неосновными, называется инжекцией, а прямой ток – диффузионным током или током инжекции. Для компенсации неосновных носителей заряда накапливающихся в p и n-областях во внешней цепи возникает электронный ток от источника напряжения, т.е. принцип электронейтральности сохраняется.

При увеличении U ток резко возрастает, - температурный потенциал, и может достигать больших величин т.к. связан с основными носителями концентрация которых велика.

2) Обратное смещение, возникает когда к р -области приложен минус, а к n -области плюс, внешнего источника напряжения (рис.1.3).

Такое внешнее напряжение U включено согласно к. Оно: увеличивает высоту потенциального барьера до величины к + U; напряженность электрического поля возрастает; ширина p-n перехода возрастает, т.к. lp-n≈(к + U)1/2; процесс диффузии полностью прекращается и через p-n переход протекает дрейфовый ток, ток неосновных носителей заряда. Такой ток p-n -перехода называют обратным, а поскольку он связан с неосновными носителями заряда, которые возникают за счет термогенерации то его называют тепловым током и обозначают - I0, т.е.

Iр-n=Iобр=Iдиф+Iдр Iдр= I0.

Этот ток мал по величине т.к. связан с неосновными носителями заряда, концентрация которых мала. Таким образом, p-n перехода обладает односторонней проводимостью.

При обратном смещении концентрация неосновных носителей заряда на границе перехода несколько снижается по сравнению с равновесной. Это приводит к диффузии неосновных носителей заряда из глубины p и n -областей к границе p-n перехода. Достигнув ее неосновные носители попадают в сильное электрическое поле и переносятся через p-n переход, где становятся основными носителями заряда. Диффузия неосновных носителей заряда к границе p-n перехода и дрейф через него в область, где они становятся основными носителями заряда, называется экстракцией. Экстракция и создает обратный ток p-n перехода – это ток неосновных носителей заряда.

Величина обратного тока сильно зависит: от температуры окружающей среды, материала полупроводника и площади p-n перехода.

Температурная зависимость обратного тока определяется выражением , где - номинальная температура, - фактическая температура, - температура удвоения теплового тока .

Тепловой ток кремниевого перехода много меньше теплового тока перехода на основе германия (на 3-4 порядка). Это связано с к материала.

С увеличением площади перехода возрастает его обьем, а следовательно возрастает число неосновных носителей появляющихся в результате термогенерации и тепловой ток.

Итак, главное свойство p-n -перехода – это его односторонняя проводимость.

4. Вольтамперная характеристика p-n – перехода.

Получим вольт-амперную характеристику p-n перехода. Для этого запишем уравнение непрерывности в общем виде:

Будем рассматривать стационарный случай dp/dt = 0.

Рассмотрим ток в квазинейтральном объеме полупроводника n-типа справа от обедненной области p-n перехода (x > 0). Темп генерации G в квазинейтральном объеме равен нулю: G = 0. Электрическое поле E тоже равно нулю: E = 0. Дрейфовая компонента тока также равна нулю: IE = 0, следовательно, ток диффузионный . Темп рекомбинации R при малом уровне инжекции описывается соотношением:

(2.57)

Воспользуемся следующим соотношением, связывающим коэффициент диффузии, длину диффузии и время жизни неосновных носителей: Dτ = Lp2.

С учетом отмеченных выше допущений уравнение непрерывности имеет вид:

(2.58)

Граничные условия для диффузионного уравнения в p-n переходе имеют вид:

(*)

Решение дифференциального уравнения (2.58) с граничными условиями (*) имеет вид:

(2.59)

Соотношение (2.59) описывает закон распределения инжектированных дырок в квазинейтральном объеме полупроводника n-типа для электронно-дырочного перехода (рис. 2.15). В токе p-n перехода принимают участие все носители, пересекшие границу ОПЗ с квазинейтральным объемом p-n перехода. Поскольку весь ток диффузионный, подставляя (2.59) в выражение для тока, получаем (рис. 2.16):

(2.60)

Соотношение (2.60) описывает диффузионную компоненту дырочного тока p-n перехода, возникающую при инжекции неосновных носителей при прямом смещении. Для электронной компоненты тока p-n перехода аналогично получаем:

При VG = 0 дрейфовые и диффузионные компоненты уравновешивают друг друга. Следовательно, .

Полный ток p-n перехода является суммой всех четырех компонент тока p-n перехода:

(2.61)

Выражение в скобках имеет физический смысл обратного тока p-n перехода. Действительно, при отрицательных напряжениях VG < 0 ток дрейфовый и обусловлен неосновными носителями. Все эти носители уходят из цилиндра длиной Ln со скоростью Lnp. Тогда для дрейфовой компоненты тока получаем:

Рис. 2.15. Распределение неравновесных инжектированных из эмиттера носителей по квазинейтральному объему базы p-n перехода

Нетрудно видеть, что это соотношение эквивалентно полученному ранее при анализе уравнения непрерывности.

Если требуется реализовать условие односторонней инжекции (например, только инжекции дырок), то из соотношения (2.61) следует, что нужно выбрать малое значение концентрации неосновных носителей np0 в p-области. Отсюда следует, что полупроводник p-типа должен быть сильно легирован по сравнению с полупроводником n-типа: NA >> ND. В этом случае в токе p-n перехода будет доминировать дырочная компонента (рис. 2.16).

Рис. 2.16. Токи в несимметричном p-n nереходе при прямом смещении

Таким образом, ВАХ p-n перехода имеет вид:

(2.62)

Плотность тока насыщения Js равна:

(2.63)

ВАХ p-n перехода, описываемая соотношением (2.62), приведена на рисунке 2.17.

Рис. 2.17. Вольт-амперная характеристика идеального p-n перехода

Как следует из соотношения (2.16) и рисунка 2.17, вольт-амперная характеристика идеального p-n перехода имеет ярко выраженный несимметричный вид. В области прямых напряжений ток p-n перехода диффузионный и экспоненциально возрастает с ростом приложенного напряжения. В области отрицательных напряжений ток p-n перехода - дрейфовый и не зависит от приложенного напряжения.

5. Емкость p-n – перехода.

Любая система, в которой при изменении потенциала φ меняется электрический заряд Q, обладает емкостью. Величина емкости С определяется соотношением: .

Для p-n перехода можно выделить два типа зарядов: заряд в области пространственного заряда ионизованных доноров и акцепторов QB и заряд инжектированных носителей в базу из эмиттера Qp. При различных смещениях на p-n переходе при расчете емкости будет доминировать тот или иной заряд. В связи с этим для емкости p-n перехода выделяют барьерную емкость CB и диффузионную емкость CD.

Барьерная емкость CB - это емкость p-n перехода при обратном смещении VG < 0, обусловленная изменением заряда ионизованных доноров в области пространственного заряда.

(2.64)

Величина заряда ионизованных доноров и акцепторов QB на единицу площади для несимметричного p-n перехода равна:

(2.65)

Дифференцируя выражение (2.65), получаем:

(2.66)

Из уравнения (2.66) следует, что барьерная емкость CB представляет собой емкость плоского конденсатора, расстояние между обкладками которого равно ширине области пространственного заряда W. Поскольку ширина ОПЗ зависит от приложенного напряжения VG, то и барьерная емкость также зависит от приложенного напряжения. Численные оценки величины барьерной емкости показывают, что ее значение составляет десятки или сотни пикофарад.

Диффузионная емкость CD - это емкость p-n перехода при прямом смещении VG > 0, обусловленная изменением заряда Qp инжектированных носителей в базу из эмиттера Qp.

Зависимость барьерной емкости СB от приложенного обратного напряжения VG используется для приборной реализации. Полупроводниковый диод, реализующий эту зависимость, называется варикапом. Максимальное значение емкости варикап имеет при нулевом напряжении VG. При увеличении обратного смещения емкость варикапа уменьшается. Функциональная зависимость емкости варикапа от напряжения определяется профилем легирования базы варикапа. В случае однородного легирования емкость обратно пропорциональна корню из приложенного напряжения VG. Задавая профиль легирования в базе варикапа ND(x), можно получить различные зависимости емкости варикапа от напряжения C(VG) - линейно убывающие, экспоненциально убывающие.

6. Полупроводниковые диоды: классификация, особенности конструкции, условные обозначения и маркировка.

Полупроводниковый диод — полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n -перехода.





Дата публикования: 2015-01-26; Прочитано: 15838 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.014 с)...