Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Метод Гаусса решения линейных систем



Условия существования и количества решений линейной системы будут изучены в дальнейшем, а пока рассмотрим способы нахождения единственного решения системы,

в которой число уравнений равно числу неизвестных: (2.3)

Пусть (этого всегда можно добиться, поменяв уравнения местами). Разделим обе части первого уравнения на и вычтем полученное уравнение из каждого из остальных уравнений системы, умножив его предварительно на где i – номер очередного уравнения. Как известно, полученная при этом новая система будет равносильна исходной. Коэффициенты при во всех уравнениях этой системы, начиная со второго, будут равны 0, т.е. система выглядит так:

.

Если новые коэффициенты при х2 не все равны нулю, можно таким же образом исключить из третьего и последующих уравнений. Продолжая эту операцию для следующих неизвестных, приведем систему к так называемому треугольному виду:

. (2.4)

Здесь символами и обозначены изменившиеся в результате преобразований числовые коэффициенты и свободные члены.

Из последнего уравнения системы (2.4) единственным образом определяется , а затем последовательной подстановкой – остальные неизвестные.

Замечание. Иногда в результате преобразований в каком-либо из уравнений обращаются в 0 все коэффициенты и правая часть, то есть оно превращается в тождество 0=0. Исключив его из системы, мы уменьшим число уравнений по сравнению с числом неизвестных. Такая система не может иметь единственного решения.

Если же в процессе применения метода Гаусса какое-нибудь уравнение превратится в равенство вида 0=1 (коэффициенты при неизвестных обратились в 0, а правая часть приняла ненулевое значение), то исходная система не имеет решения, так как подобное равенство является неверным при любых значениях неизвестных.

Примеры:

1. Решим методом Гаусса систему

Вычтем из второго уравнения удвоенное первое, а из третьего – первое, умноженное на 5.

Получим: . Теперь вычтем из третьего уравнения удвоенное второе, а затем разделим второе уравнение на –7 (коэффициент при у), а третье – на 15 (новый коэффициент при z). Система примет вид:

. Отсюда z=3, y=2, x=1 – единственное решение системы.

2. Система после исключения х из второго и третьего уравнений примет вид: . Если затем вычесть второе уравнение из третьего, то последнее уравнение станет тождеством 0=0. В системе осталось два уравнения: . Ее решение можно записать в виде: х = -2, у – любое число, z = 7 – y. Таким образом, система имеет бесконечно много решений.

3. . Применив к этой системе метод Гаусса, получим ,

откуда . Последнее равенство является неверным при любых значениях неизвестных, следовательно, система не имеет решения.

6. РАНГ МАТРИЦЫ.ТЕОРЕМА КРОНЕКЕРА-КАПЕЛЛИ

Рассмотрим матрицу А размера . Выберем в этой матрице произвольно k строк и k столбцов, где k ≤ m и k≤ n. Из элементов, стоящих на пересечении выделенных k строк и k столбцов, составим определитель k-го порядка. Все такие определители называют минорами k-го порядка матрицы А.

Пример 11. Из матрицы можно составить 12 миноров 1-го порядка – это сами элементы матрицы А. Если выбрать какие-либо две строки и два столбца матрицы, то можно составить миноры 2-го порядка, например .

Минорами 3-го порядка являются определители , , , .

Нетрудно проверить, что все миноры 3-го порядка данной матрицы А равны нулю, а миноры 2-го порядка не все равны нулю, во всяком случае, минор .

Определение. Наивысший порядок отличного от нуля минора матрицы называется ее рангом. В нашем примере ранг матрицы равен 2.

Для вычисления ранга матрицы ее сначала приводят к более простому виду с помощью так называемых элементарных преобразований, к которым относятся:

1) перестановка строк матрицы;

2) умножение какой-либо строки на одно и то же отличное от нуля число;

3) прибавление к элементам строки соответствующих элементов другой строки, предварительно умноженных на некоторое число.

Можно показать, что элементарные преобразования не меняют ранга матрицы.

Если с помощью элементарных преобразований получить нули ниже главной диагонали матрицы, то ранг исходной матрицы будет равен числу ненулевых строк преобразованной матрицы.

Пример 12. С помощью элементарных преобразований вычислить ранг матрицы

.

Решение. Умножим первую строку матрицы на –2 и прибавим ко второй строке:

~ .

Теперь умножим первую строку на –3 и сложим ее с третьей строкой, а затем вычтем из последней строки первую. Имеем

.

Умножая вторую строку получившейся матрицы на –2 и складывая ее с третьей строкой, а затем складывая вторую строку с последней, получим матрицу

.

Преобразованная матрица имеет две ненулевые строки, следовательно, ранг матрицы А равен двум: r(А)=2.

Рассмотрим систему m линейных уравнений с n неизвестными:

Назовем матрицей системы матрицу, составленную из коэффициентов при неизвестных. Матрицу, полученную из А добавлением столбца свободных членов, называют расширенной матрицей:

.

Ясно, что , так как каждый минор матрицы А будет и минором матрицы , но не наоборот.

Теорема Кронекера–Капелли (критерий совместности системы линейных уравнений). Для того чтобы система линейных уравнений была совместной, необходимо и достаточно, чтобы ранг матрицы системы был равен рангу ее расширенной матрицы, т.е. .

Замечание. Если ранг матрицы совместной системы равен числу неизвестных, то система имеет единственное решение, если же ранг меньше числа неизвестных, то система имеет множество решений.

Пример 13. Исследовать систему линейных уравнений

Решение. Составим расширенную матрицу системы и с помощью элементарных преобразований вычислим одновременно ранги обеих матриц.

Далее умножим вторую строку на -2 и сложим с третьей, а затем сложим третью строку с последней. Имеем

.

Ранг матрицы системы равен трем, так как матрица имеет три ненулевых строки, а ранг расширенной матрицы равен четырем. Тогда согласно теореме Кронекера-Капелли система не имеет решений.





Дата публикования: 2015-02-03; Прочитано: 297 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...