![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Расстояние от точки до прямой определяется длиной перпендикуляра, опущенного из точки на прямую.
Если прямая параллельна плоскости проекции (h | | П1), то для того чтобы определить расстояние от точки А до прямой h необходимо опустить перпендикуляр из точки А на горизонталь h.
d = |A*Mx + B*My + C|/(корень квадратный, под корнем A^2 + B^2)
Взаимное расположение прямых на плоскости.
Во-первых, две прямые на плоскости могут совпадать.
Это возможно в том случае, когда прямые имеют по крайней мере две общие точки.
Во-вторых, две прямые на плоскости могут пересекаться.
В этом случае прямые имеют одну общую точку, которую называют точкой пересечения прямых.
Отдельно стоит рассмотреть расположение прямых на плоскости, когда угол между ними равен девяноста градусам. В этом случае прямые называются перпендикулярными
В-третьих, две прямые на плоскости могут быть параллельными.
Две прямые на плоскости называются параллельными, если они не имеют общих точек.
Декартовы координаты в пространстве. Задача о делении отрезка в данном отношении.
Декартова прямоугольна система координат в пространстве определяется заданием линейной единицы для измерения длин и трех пересекающихся в одной точке взаимно перпендикулярных осей, занумерованных в каком-либо порядке.
Точка пересечения осей называется началом координат, а сами оси - координатными осями. Первая координатная ось называется осью абсцисс, вторая - осью ординат, третья - осью апликат.
Формулы деления отрезка в данном отношении в пространстве
Для пространственных отрезков всё будет точно так же, только добавится ещё одна координата.
Если известны две точки пространства, то координаты точки, которая делит отрезок в отношении, выражаются формулами:
Дата публикования: 2015-02-03; Прочитано: 332 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!