Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Свойства скалярного произведения. 2. для любых векторов и любого числа х;



Для любых векторов;

2. для любых векторов и любого числа х;

Для любых векторов;

Когда или хотя бы один из векторов нулевой;

5.

28.ЛИНЕЙНАЯ ЗАВИСИМОСТЬ ВЕКТОРОВ [vectors linear dependence] — частный случай по отношению к общему понятию линейной зависимости. Рассмотрим в качестве примера два произвольных ненулевых вектора, a и b, принадлежащих векторному пространству V.

Если можно подобрать такие не равные нулю числа α и β, что α a + β b = 0, то векторы a и b называются линейно зависимыми. Причина этого ясна: с помощью полученного равенства можно выразить, напр., вектор a через вектор b. Это значит, что a зависит от b. Можно обобщить это определение и на произвольное число векторов: если существуют такие отличные от нуля числа α1,..., α n, что ∑α i a i = 0, то векторы называются линейно зависимыми, если же такая система чисел отсутствует, то линейно независимыми.

Линейное, или векторное пространство над полем — это упорядоченная четвёрка , где

— непустое множество элементов произвольной природы, которые называются векторами;

— (алгебраическое) поле, элементы которого называются скалярами;

— операция сложения векторов, сопоставляющая каждой паре элементов множества единственный элемент множества , обозначаемый ;

— операция умножения векторов на скаляры, сопоставляющая каждому элементу поля и каждому элементу множества единственный элемент множества , обозначаемый ;

причём, заданные операции удовлетворяют следующим аксиомам — аксиомам линейного (векторного) пространства:

1. , для любых (коммутативность сложения);

2. , для любых (ассоциативность сложения);

3. существует такой элемент , что для любого (существование нейтрального элемента относительно сложения), в частности не пусто;

4. для любого существует такой элемент , что (существование противоположного элемента относительно сложения).

5. (ассоциативность умножения на скаляр);

6. (унитарность: умножение на нейтральный (по умножению) элемент поля F сохраняет вектор).

7. (дистрибутивность умножения на вектор относительно сложения скаляров);

8. (дистрибутивность умножения на скаляр относительно сложения векторов).

Таким образом, операция сложения задаёт на множестве структуру (аддитивной) абелевой группы.

Векторные пространства, заданные на одном и том же множестве элементов, но над различными полями, будут различными векторными пространствами.

В качестве дополнительной (девятой) аксиомы векторного пространства иногда используют следующую: размерность пространства равна некоторому натуральному числу (если существует максимальная линейно независимая система векторов данного пространства или, что тоже самое, существует конечная порождающая система векторов данного пространства), и тогда такое пространство называют конечномерным, или говорят, что пространство бесконечномерное (если не существует конечной порождающей системы векторов данного пространства). В соответствии с этим, теория линейных (векторных) пространств разделяется на две различные части: теорию конечномерных пространств, в которой существенным оказывается алгебраический аспект, и теорию бесконечномерных пространств, где главным оказывается аспект анализа — вопрос о разложимости данного элемента по заданной бесконечной системе функций.

Простейшие свойства[править | править исходный текст]

1. Векторное пространство является абелевой группой по сложению.

2. Нейтральный элемент является единственным, что вытекает из групповых свойств.

3. для любого .

4. Для любого противоположный элемент является единственным, что вытекает из групповых свойств.

5. для любого .

6. для любых и .

7. для любого .





Дата публикования: 2015-02-03; Прочитано: 242 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...