![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Наряду с понятием источника э.д.с. при расчетах электрических цепей пользуются понятием - источник тока.
Идеальным источником тока называется активный элемент, который поддерживает во внешней цепи ток, не зависящий от напряжения на его зажимах. Внутреннее сопротивление идеального источника тока r0= ∞. Для изображения источника тока используется обозначение, представленное на рис.1.6(а). Направление двойной стрелки соответствует положительному направлению тока источника.
Вольтамперная характеристика источника тока имеет вид рис.1.7, где зависимость«a»-вольтамперная характеристика идеального источника тока, а зависимость «в»-вольтамперная характеристика реального источника тока, имеющего конечное внутреннее сопротивление. На схеме реальный источник изображается в виде идеального источника тока и подключенного параллельного ему сопротивления (рис.1.6 б). Необходимо отметить, что обе схемы замещения реальных источников электрической энергии (рис.1.4 а и рис.1.5 б) являются эквивалентными (они имеют одну и ту же вольтамперную характеристику) с точки зрения токов, напряжений и мощностей во внешних участках электрической цепи. Если внутреннее сопротивление источника r0 много больше сопротивления пассивного сопротивления приемника (нагрузки) rн, т.е. r0 > rн, то ток источника при изменении r_н остается практически неизменным. В этом случае источник электрической энергии выступает в роли источника тока; в случае, когда r0 << rн, напряжение на зажимах источника остается практически неизменным при изменении rн. В этом случае в качестве источника электрической энергии рассматривается источник напряжения.
2.Основные характеристики электромагнитного поля |
1. Напряженность электрического поля – физическая характеристика электрического поля, определяющая силовое воздействие поля на электрический заряд.
Напряженность электрического поля ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ ФГБОУ ВПО «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» ЗАУРАЛЬСКИЙ ФИЛИАЛ | Экзаменационный билет №6 Кафедра: ФИЗИКИ, МАТЕМАТИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ Дисциплина: Теоретические основы электротехники Направления «Агроинженерия» II курс | УТВЕРЖДЕНО НА ЗАСЕДАНИИ КАФЕДРЫ «» 2012 г. Зав. кафедрой ____________Музафаров С. М. |
Задача анализа цепи. Законы Кирхгофа.
Основные понятия и законы магнитных цепей.
Задача.
Задача анализа цепи. Законы Кирхгофа.
Задача анализа электрической цепи формулируется следующим образом: заданы схемы электрической цепи со значениями всех ее элементов, а также напряжения и токи источников, действующих в цепи, требуется найти токи в ветвях и напряжения на элементах цепи. Для определения искомых токов и напряжений необходимо составить уравнения цепи, которые определяются только геометрической конфигурацией и способами соединения элементов цепи. Эти уравнения составляются на основе двух законов Кирхгофа, которые связывают токи ветвей, сходящихся в узлах, и напряжения элементов, входящих в контуры.
Первый закон Кирхгофа, выражающий закон сохранения заряда, формулируется так: в любой момент алгебраическая сумма токов ветвей, сходящихся в узле электрической цепи, равна нулю.
Знак тока при записи первого закона Кирхгофа определяется выбором положительных направлений токов ветвей: например, токам, входящим в узел, приписывают условно знак плюс, а токам, выходящим из узла - знак минус. Так, для узла, изображенного на рис.1.10 второй закон Кирхгофа, выражающий закон сохранения энергии, формулируется следующим образом: в любой момент алгебраическая сумма напряжений в ветвях контура равна нулю.
Суммирование напряжений производится с учетом их положительных направлений и выбранного направления обхода контура. Если положительное направление напряжения ветви совпадает с напряжением обхода контура, то оно входит в (1.13) со знаком плюс, в противном случае – со знаком минус.
Часто используется другая формулировка второго закона Кирхгофа: алгебраическая сумма э.д.с. источников, действующих в контуре, равна алгебраической сумме напряжений на элементах контура.
При этом напряжения на элементах контура и э.д.с. источников входят в уравнение (1.14) со знаком плюс, если их положительные направления совпадают с направлением обхода контура, в обратном случае слагаемые в (1.14) берутся со знаком минус. Например, для схемы (рис.1.11) при обходе по часовой стрелке уравнение второго закона Кирхгофа запишется следующим образом:
Для разветвленной цепи, содержащей q узлов и k ветвей, при определении неизвестных токов следует составить k уравнений по первому и второму законам Кирхгофа, т.к. число неизвестных токов
равно числу ветвей цепи. Причем число уравнений, составленных по первому закону Кирхгофа, равно (q-1), а число уравнений, составленных по второму закону Кирхгофа, - (k-(q-1)).
Уравнение второго закона Кирхгофа может быть записано для участка цепи между точками «а» и «b» (см. рис.1.12). При этом контур замыкается по стрелке, указывающей положительное направление напряжения между точками «a» и «b».
Таким образом, можно всегда определить напряжение между двумя любыми точками электрической цепи.
Основные понятия и законы магнитных цепей.
При решении электротехнических задач все вещества в магнитном отношении делятся на две группы:
ферромагнитные (относительная магнитная проницаемость );
неферромагнитные (относительная магнитная проницаемость ).
Для концентрации магнитного поля и придания ему желаемой конфигурации отдельные части электротехнических устройств выполняются из ферромагнитных материалов. Эти части называют магнитопроводами или сердечниками. Магнитный поток создается токами, протекающими по обмоткам электротехнических устройств, реже – постоянными магнитами. Совокупность устройств, содержащих ферромагнитные тела и образующих замкнутую цепь, вдоль которой замыкаются линии магнитной индукции, называют магнитной цепью.
Магнитное поле характеризуется тремя векторными величинами, которые приведены в табл. 1.
Таблица 1. Векторные величины, характеризующие магнитное поле
Наименование | Обозначение | Единицы измерения | Определение |
Вектор магнитной индукции | ![]() | Тл (тесла) | Векторная величина, характеризующая силовое действие магнитного поля на ток по закону Ампера |
Вектор намагниченности | ![]() | А/м | Магнитный момент единицы объема вещества |
Вектор напряженности магнитного поля | ![]() | А/м | ![]() ![]() ![]() ![]() ![]() |
Основные скалярные величины, используемые при расчете магнитных цепей, приведены в табл. 2.
Таблица 2. Основные скалярные величины, характеризующие магнитную цепь
Наименование | Обозначение | Единица измерения | Определение |
Магнитный поток | ![]() | Вб (вебер) | Поток вектора магнитной индукции через поперечное сечение ![]() ![]() |
Магнитодвижущая (намагничивающая) сила МДС (НС) | ![]() | A | ![]() ![]() ![]() |
Магнитное напряжение | ![]() | А | Линейный интеграл от напряженности магнитного поля ![]() ![]() ![]() ![]() |
Дата публикования: 2015-01-26; Прочитано: 409 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!