![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Пусть дуга AB лежит на кусочно-гладкой поверхности S, пусть функции P(x, y, z), Q(x, y, z), R(x, y, z) непрерывны и имеют непрерывные частные производные на S. Тогда следующие четыре утверждения эквивалентны.
1) не зависит от формы дуги (от пути интегрирования), а зависит только от начальной и конечной точек дуги.
2) Для любого замкнутого контура
3)
4) .
- полный дифференциал.
Доказательство. Доказательство аналогично двумерному случаю, схема доказательства та же: . Докажите ее самостоятельно.
проводится по теореме о смешанных производных так же как в двумерном случае.
проводится по теореме Стокса (будет сформулирована и доказана ниже).
доказательство полностью аналогично двумерному случаю.
доказательство аналогично двумерному случаю.
Замечание. Формула Ньютона-Лейбница справедлива в трехмерном случае и доказывается так же.
Дата публикования: 2015-01-10; Прочитано: 256 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!