![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Замена переменных в тройном интеграле.
Теорема. Пусть с помощью непрерывных функций x = x(u, v, w), y = y(u, v, w), z =z(u, v, w) имеющих непрерывные частные производные установлено взаимно однозначное соответствие пространственно односвязных ограниченных, замкнутых областей Dxyz, Duvw с кусочно-гладкой границей. Тогда
, где
- якобиан (определитель Якоби).
Теорема приведена без доказательства.
Дата публикования: 2015-01-10; Прочитано: 296 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!